Unveiling and exemplifying the unitary equivalence of discrete time quantum walk models

被引:10
|
作者
Venancio, B. F. [1 ]
Andrade, F. M. [2 ]
da Luz, M. G. E. [1 ]
机构
[1] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, PR, Brazil
[2] Univ Estadual Ponta Grossa, Dept Matemat & Estat, BR-84030900 Ponta Grossa, PR, Brazil
关键词
D O I
10.1088/1751-8113/46/16/165302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two major discrete time formulations for quantum walks, coined and scattering, are unitarily equivalent for arbitrary position-dependent transition amplitudes and any topology (Andrade et al 2009 Phys. Rev. A 80 052301). Although the proof explicitly describes the mapping obtention, its high technicality may hinder relevant physical aspects involved in the equivalence. Discussing concrete examples-the most general constructions for the line, square and honeycomb lattices-here we unveil the similarities and differences of these two versions of quantum walks. We moreover show how to derive the dynamics of one from the other by means of proper projections. We perform calculations for different probability amplitudes such as Hadamard, Grover, discrete Fourier transform and the uncommon in the area (but interesting) discrete Hartley transform, comparing the evolutions. Our study illustrates the models' interplay, an important issue for implementations and applications of such systems.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Equivalence between discrete quantum walk models in arbitrary topologies
    Andrade, F. M.
    da Luz, M. G. E.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [2] From Discrete Time Quantum Walk to Continuous Time Quantum Walk in Limit Distribution
    Shikano, Yutaka
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (07) : 1558 - 1570
  • [3] Discrete time quantum walk on the Apollonian network
    Souza, A. M. C.
    Andrade, R. F. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (14)
  • [4] Unitary equivalence of quantum walks
    Goyal, Sandeep K.
    Konrad, Thomas
    Diosi, Lajos
    PHYSICS LETTERS A, 2015, 379 (03) : 100 - 104
  • [5] Quantum simulation of a discrete-time quantum stochastic walk
    Schuhmacher, Peter K.
    Govia, Luke C. G.
    Taketani, Bruno G.
    Wilhelm, Frank K.
    EPL, 2021, 133 (05)
  • [6] Quantum magnetometry using discrete-time quantum walk
    Shukla, Kunal
    Chandrashekar, C. M.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [7] Discrete-Time Quantum Walk on Multilayer Networks
    Jayakody, Mahesh N.
    Pradhan, Priodyuti
    Ben Porath, Dana
    Cohen, Eliahu
    ENTROPY, 2023, 25 (12)
  • [8] Spatial search using the discrete time quantum walk
    Neil B. Lovett
    Matthew Everitt
    Matthew Trevers
    Daniel Mosby
    Dan Stockton
    Viv Kendon
    Natural Computing, 2012, 11 : 23 - 35
  • [9] The discrete-time quaternionic quantum walk on a graph
    Norio Konno
    Hideo Mitsuhashi
    Iwao Sato
    Quantum Information Processing, 2016, 15 : 651 - 673
  • [10] Discrete time quantum walk on a line with two particles
    Sheridan, L.
    Paunkovic, N.
    Omar, Y.
    Bose, S.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (03) : 573 - 583