Optimal control problems with multiple characteristic time points in the objective and constraints

被引:109
|
作者
Loxton, R. C. [1 ]
Teo, K. L. [1 ]
Rehbock, V. [1 ]
机构
[1] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Control parametrization; Optimal control computation; Non-linear optimal control; Constrained optimal control; Non-linear programming;
D O I
10.1016/j.automatica.2008.04.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a computational method for a class of optimal control problems where the objective and constraint functionals depend on two or more discrete time points. These time points can be either fixed or variable. Using the control parametrization technique and a time scaling transformation, this type of optimal control problem is approximated by a sequence of approximate optimal parameter selection problems. Each of these approximate problems can be viewed as a finite dimensional optimization problem. New gradient formulae for the cost and constraint functions are derived. With these gradient formulae, standard gradient-based optimization methods can be applied to solve each approximate optimal parameter selection problem. For illustration, two numerical examples are solved. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2923 / 2929
页数:7
相关论文
共 50 条
  • [11] Necessary and sufficient conditions for optimal control problems with multiple terminal constraints
    Jo, JW
    Prussing, JE
    SPACEFLIGHT MECHANICS 1998, VOL 99, PTS 1 AND 2, 1998, 99 : 883 - 905
  • [13] DISCRETE-TIME OPTIMAL-CONTROL PROBLEMS WITH GENERAL CONSTRAINTS
    FISHER, ME
    JENNINGS, LS
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (04): : 401 - 413
  • [14] Solving of time varying quadratic optimal control problems by using Bezier control points
    Gachpazan, Mortaza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (02): : 367 - 379
  • [15] MULTIPLE-OBJECTIVE PROBLEMS - PARETO-OPTIMAL SOLUTIONS BY METHOD OF PROPER EQUALITY CONSTRAINTS
    LIN, JG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (05) : 641 - 650
  • [16] OPTIMAL CONTROL PROBLEMS WITH MIXED CONSTRAINTS
    Clarke, Francis
    de Pinho, M. R.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (07) : 4500 - 4524
  • [17] Optimal control problems with mixed constraints
    Dikusar, VV
    DIFFERENTIAL EQUATIONS, 1996, 32 (11) : 1462 - 1468
  • [18] ON BOLZA OPTIMAL CONTROL PROBLEMS WITH CONSTRAINTS
    Cannarsa, Piermarco
    Frankowska, Helena
    Marchini, Elsa M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03): : 629 - 652
  • [19] Optimal control problems with stopping constraints
    Qun Lin
    Ryan Loxton
    Kok Lay Teo
    Yong Hong Wu
    Journal of Global Optimization, 2015, 63 : 835 - 861
  • [20] Optimal control problems with stopping constraints
    Lin, Qun
    Loxton, Ryan
    Teo, Kok Lay
    Wu, Yong Hong
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (04) : 835 - 861