A generalization of rings of type (1,1)

被引:0
|
作者
Kleinfeld, E [1 ]
Kleinfeld, M [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
D O I
10.1006/jabr.1998.7848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:126 / 130
页数:5
相关论文
共 50 条
  • [41] On (-1,1)-Matrices of Skew Type with the Maximal Determinant and Tournaments
    Andres Armario, Jose
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 1 - 11
  • [42] On a weak type (1,1) inequality for a maximal conjugate function
    Asmar, NH
    MontgomerySmith, SJ
    STUDIA MATHEMATICA, 1997, 125 (01) : 13 - 21
  • [43] Weighted weak type (1,1) bounds for rough operators
    Vargas, AM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 297 - 310
  • [44] Prime (-1,1) and Jordan monsters and superalgebras of vector type
    Pchelintsev, Sergey V.
    Shestakov, Ivan P.
    JOURNAL OF ALGEBRA, 2015, 423 : 54 - 86
  • [45] Geometry of Limits of Zeros of Polynomial Sequences of Type (1,1)
    D. G. L. Wang
    J. J. R. Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 785 - 803
  • [46] On the Geometry of the (1,1)-Tensor Bundle with Sasaki Type Metric
    Salimov, Arif
    Gezer, Aydin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (03) : 369 - 386
  • [47] (1,1)-Tensor sphere bundle of Cheeger–Gromoll type
    Peyghan E.
    Nourmohammadifar L.
    Tayebi A.
    Arabian Journal of Mathematics, 2017, 6 (4) : 315 - 327
  • [48] Weak type (1,1) of some operators for the Laplacian with drift
    Li, Hong-Quan
    Sjogren, Peter
    Wu, Yurong
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) : 623 - 633
  • [49] On the Geometry of the(1,1)-Tensor Bundle with Sasaki Type Metric
    Arif SALIMOV
    Aydin GEZER
    Chinese Annals of Mathematics(Series B), 2011, 32 (03) : 369 - 386
  • [50] Lifts of connections to the bundle of (1,1) type tensor frames
    Fattayev, Habil
    Cayir, Hasim
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2021, 39 (02): : 177 - 183