NONCONCENTRATION OF RETURN TIMES

被引:4
|
作者
Gurel-Gurevich, Ori [1 ]
Nachmias, Asaf [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ANNALS OF PROBABILITY | 2013年 / 41卷 / 02期
关键词
Random walks; return times; finite collision property;
D O I
10.1214/12-AOP785
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the distribution of the first return time tau to the origin, v, of a simple random walk on an infinite recurrent graph is heavy tailed and nonconcentrated. More precisely, if d(v) is the degree of v, then for any t >= 1 we have P-v(tau >= t) >= c/d(v)root t and P-v(tau = t vertical bar tau >= t) <= C log(d(v)t)/t for some universal constants c > 0 and C < infinity. The first bound is attained for all t when the underlying graph is Z, and as for the second bound, we construct an example of a recurrent graph G for which it is attained for infinitely many t's. Furthermore, we show that in the comb product of that graph G with Z, two independent random walks collide infinitely many times almost surely. This answers negatively a question of Krishnapur and Peres [Electron. Commun. Probab. 9 (2004) 72-81] who asked whether every comb product of two infinite recurrent graphs has the finite collision property.
引用
收藏
页码:848 / 870
页数:23
相关论文
共 50 条
  • [21] Improved Range in the Return Times Theorem
    Demeter, Ciprian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 708 - 722
  • [22] On fluctuations and the exponential statistics of return times
    Saussol, B
    NONLINEARITY, 2001, 14 (01) : 179 - 191
  • [23] Return times theorem for amenable groups
    Pavel Zorin-Kranich
    Israel Journal of Mathematics, 2014, 204 : 85 - 96
  • [24] Cadillac dreams of a return to better times
    Avram, P
    PROFESSIONAL ENGINEERING, 1997, 10 (18) : 34 - 34
  • [25] RETURN TIMES FOR NONSINGULAR MEASURABLE TRANSFORMATIONS
    ALPERN, S
    PRASAD, VS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 152 (02) : 470 - 487
  • [26] ON THE CONVERGENCE OF LOGARITHMIC FIRST RETURN TIMES
    Dajani, Karma
    Kalle, Charlene
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (01): : 35 - 46
  • [27] RETURN TIMES FOR DYNAMICAL-SYSTEMS
    BOURGAIN, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (12): : 483 - 485
  • [28] Introduction: A Return to the Bad Old Times
    Durao, Fabio Akcelrud
    CLCWEB-COMPARATIVE LITERATURE AND CULTURE, 2021, 23 (02):
  • [29] ITERATED LOGARITHM SPEED OF RETURN TIMES
    Pawelec, Lukasz
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) : 468 - 478
  • [30] Hitting and return times in ergodic dynamical systems
    Haydn, N
    Lacroix, Y
    Vaienti, S
    ANNALS OF PROBABILITY, 2005, 33 (05): : 2043 - 2050