NONCONCENTRATION OF RETURN TIMES

被引:4
|
作者
Gurel-Gurevich, Ori [1 ]
Nachmias, Asaf [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ANNALS OF PROBABILITY | 2013年 / 41卷 / 02期
关键词
Random walks; return times; finite collision property;
D O I
10.1214/12-AOP785
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the distribution of the first return time tau to the origin, v, of a simple random walk on an infinite recurrent graph is heavy tailed and nonconcentrated. More precisely, if d(v) is the degree of v, then for any t >= 1 we have P-v(tau >= t) >= c/d(v)root t and P-v(tau = t vertical bar tau >= t) <= C log(d(v)t)/t for some universal constants c > 0 and C < infinity. The first bound is attained for all t when the underlying graph is Z, and as for the second bound, we construct an example of a recurrent graph G for which it is attained for infinitely many t's. Furthermore, we show that in the comb product of that graph G with Z, two independent random walks collide infinitely many times almost surely. This answers negatively a question of Krishnapur and Peres [Electron. Commun. Probab. 9 (2004) 72-81] who asked whether every comb product of two infinite recurrent graphs has the finite collision property.
引用
收藏
页码:848 / 870
页数:23
相关论文
共 50 条
  • [1] The return of Strong Times
    不详
    CONNAISSANCE DES ARTS, 2010, (687): : 126 - 126
  • [2] Better times return
    Met Powder Rep, 2007, 10 (03):
  • [3] Good times return
    Textile Asia/Ya-Chou Fang Chih Yueh Kan, 27 (04):
  • [4] GEOMETRIC AVERAGING OPERATORS AND NONCONCENTRATION INEQUALITIES
    Gressman, Philip T.
    ANALYSIS & PDE, 2022, 15 (01): : 85 - 122
  • [5] NONCONCENTRATION IN PARTIALLY RECTANGULAR BILLIARDS
    Hillairet, Luc
    Marzuola, Jeremy L.
    ANALYSIS & PDE, 2012, 5 (04): : 831 - 854
  • [6] A double return times theorem
    Pavel Zorin-Kranich
    Israel Journal of Mathematics, 2019, 229 : 255 - 267
  • [7] Entry and return times distribution
    Haydn, N. T. A.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (03): : 333 - 353
  • [8] Explaining Return Times for Wildfires
    Alan E. Gelfand
    Joao V. D. Monteiro
    Journal of Statistical Theory and Practice, 2014, 8 (3) : 534 - 545
  • [9] A double return times theorem
    Zorin-Kranich, Pavel
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 229 (01) : 255 - 267
  • [10] GOOD TIMES WILL RETURN + POLAND
    BIELECKI, C
    INDEX ON CENSORSHIP, 1986, 15 (09) : 10 - 14