Adaptive Neuro-Fuzzy Inference System-Based Bass Gura Controller for Solar-Powered SEPIC Converter

被引:1
|
作者
Lekshmi Sree, B. [1 ]
Umamaheswari, M. G. [2 ]
Sangari, A. [2 ]
Komathi, C. [3 ]
Durgadevi, S. [3 ]
Marimuthu, Gajendran [4 ]
机构
[1] Narsimha Reddy Engn Coll, Dept Elect & Elect Engn, Secunderabad, India
[2] Rajalakshmi Engn Coll, Dept Elect & Elect Engn, Chennai, India
[3] Sri Sairam Engn Coll, Dept Elect & Instrumentat Engn, Chennai, India
[4] RMK Engn Coll, Dept Elect & Instrumentat Engn, Kavaraipettai, India
关键词
Adaptive neuro-fuzzy inference system-based Bass Gura controller; DC-DC single-ended primary inductance converter; optimization techniques; reduced order; solar photovoltaic system; HIGH STEP-UP; STEADY-STATE; ALGORITHM; ENERGY; DESIGN; IMPLEMENTATION;
D O I
10.1080/03772063.2022.2143442
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A systematic design and detailed circuit analysis of a solar-powered ROSEPIC (reduced order single ended primary inductance converter) converter for maximum power point tracking (MPPT) and load voltage regulation by cascading an adaptive neuro-fuzzy inference system (ANFIS)-based Bass Gura controller with particle swarm optimization for standalone DC nanogrid applications has been proposed. An accurate mathematical model is derived to evaluate the gains of the Bass Gura controller. The order of the transfer function is reduced by using the moment matching method. The performance of the proposed controller is compared with the conventional Bass Gura controller to show the effectiveness of the system. Also, to substantiate the simulation results, an experimental prototype model controlled by C2000 Piccolo TMS320F28035MCU digital controller is set up. The inferences arrived from the results are (a) the proposed ANFIS-based Bass Gura controller has the ability in tracking 81.48-99.42% of MPPT and load voltage simultaneously against various irradiation levels, temperatures, and loads and (b) the moment matching method eases the controller design by retaining only the dominant modes. Despite of its potential benefits, the ROSEPIC system is also subjected to partial shading conditions, and the results guaranteed that the proposed ANFIS-based Bass Gura controller is effective enough in tracking the MPPT as well as the load voltage.
引用
收藏
页码:1699 / 1715
页数:17
相关论文
共 50 条
  • [31] Force tracking control for electrohydraulic servo system based on adaptive neuro-fuzzy inference system (ANFIS) controller
    Yu, Lie
    Ding, Lei
    Yu, Fangli
    Zheng, Jianbin
    Tian, Yukang
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (01) : 1 - 16
  • [32] Adaptive neuro-fuzzy inference system-based model for elevation-surface area-storage interrelationships
    Fayaed, Sabah S.
    El-Shafie, Ahmed
    Jaafar, Othman
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (05): : 987 - 998
  • [33] Channel estimation based on adaptive neuro-fuzzy inference system in OFDM
    Seyman, M. Nuri
    Taspinar, Necmi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2008, E91B (07) : 2426 - 2430
  • [34] Adaptive neuro-fuzzy inference system based automatic generation control
    Hosseini, S. H.
    Etemadi, A. H.
    ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (07) : 1230 - 1239
  • [35] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [36] Prediction of amount of imports based on adaptive neuro-fuzzy inference system
    Chang, Zhipeng
    Liu, Liping
    Li, Zhiping
    2007 INTERNATIONAL CONFERENCE ON INTELLIGENT PERVASIVE COMPUTING, PROCEEDINGS, 2007, : 437 - 440
  • [37] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM BASED MODELLING OF VEHICLE GUIDANCE
    Avdagic, Zikrija
    Cernica, Elvedin
    Omanovic, Samir
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (04): : 2116 - 2131
  • [38] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [39] State of charge estimation based on adaptive neuro-fuzzy inference system
    Guan Jiansheng
    Xu Wenjin
    Zhang Abu
    ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 840 - 843
  • [40] Diagnosing Breast Cancer Based on the Adaptive Neuro-Fuzzy Inference System
    Chidambaram, S.
    Ganesh, S. Sankar
    Karthick, Alagar
    Jayagopal, Prabhu
    Balachander, Bhuvaneswari
    Manoharan, S.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022