Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide

被引:357
|
作者
Balendhran, Sivacarendran [1 ,2 ]
Deng, Junkai [3 ]
Ou, Jian Zhen [1 ,2 ]
Walia, Sumeet [1 ,2 ]
Scott, James [1 ,2 ]
Tang, Jianshi [4 ]
Wang, Kang L. [4 ]
Field, Matthew R. [5 ]
Russo, Salvy [5 ]
Zhuiykov, Serge [6 ]
Strano, Michael S. [7 ]
Medhekar, Nikhil [3 ]
Sriram, Sharath [1 ,2 ]
Bhaskaran, Madhu [1 ,2 ]
Kalantar-zadeh, Kourosh [1 ,2 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, MicroNanoElect & Sensor Technol Res Grp, Melbourne, Vic, Australia
[2] RMIT Univ, Sch Elect & Comp Engn, Funct Mat & Microsyst Res Grp, Melbourne, Vic, Australia
[3] Monash Univ, Dept Mat Engn, Clayton, Vic 3168, Australia
[4] Univ Calif Los Angeles, Dept Elect Engn, Device Res Lab, Los Angeles, CA 90024 USA
[5] RMIT Univ, Sch Appl Sci, Melbourne, Vic, Australia
[6] CSIRO, Mat Sci & Engn Div, Highett, Vic, Australia
[7] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
澳大利亚研究理事会;
关键词
two-dimensional materials; MoO3; field effect transistors; carrier mobility; intercalation; THIN-FILMS; MOO3; ALPHA-MOO3;
D O I
10.1002/adma.201203346
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate that the energy bandgap of layered, high-dielectric alpha-MoO3 can be reduced to values viable for the fabrication of 2D electronic devices. This is achieved through embedding Coulomb charges within the high dielectric media, advantageously limiting charge scattering. As a result, devices with alpha-MoO3 of similar to 11 nm thickness and carrier mobilities larger than 1100 cm(2) V-1 s(-1) are obtained.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 50 条
  • [21] Dimensional Crossover in the Carrier Mobility of Two-Dimensional Semiconductors: The Case of InSe
    Li, Wenbin
    Ponce, Samuel
    Giustino, Feliciano
    NANO LETTERS, 2019, 19 (03) : 1774 - 1781
  • [22] High-κ two-dimensional dielectric
    Takenobu, Taishi
    NATURE MATERIALS, 2023, 22 (07) : 811 - 812
  • [23] High-κ two-dimensional dielectric
    Taishi Takenobu
    Nature Materials, 2023, 22 : 811 - 812
  • [24] Proton intercalated two-dimensional WO3 nano-flakes with enhanced charge-carrier mobility at room temperature
    Zhuiykov, Serge
    Kats, Eugene
    Carey, Benjamin
    Balendhran, Sivacarendran
    NANOSCALE, 2014, 6 (24) : 15029 - 15036
  • [25] Enhanced carrier mobility in anisotropic two-dimensional tetrahex- carbon through strain engineering
    Peng, Xihong
    Wei, Qun
    Yang, Guang
    CARBON, 2020, 165 : 37 - 44
  • [26] Enhanced carrier mobility in anisotropic two-dimensional tetrahex-carbon through strain engineering
    Peng X.
    Wei Q.
    Yang G.
    Carbon, 2021, 165 : 37 - 44
  • [27] Two-dimensional carbon allotropes with tunable direct band gaps and high carrier mobility
    Zhang, Wei
    Chai, Changchun
    Fan, Qingyang
    Song, Yanxing
    Yang, Yintang
    APPLIED SURFACE SCIENCE, 2021, 537
  • [28] A Strong Two-Dimensional Semiconductorl-B4C with High Carrier Mobility
    Li, Jun
    An, Qi
    Liu, Lisheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (13): : 6036 - 6046
  • [29] Two-dimensional IV-VA3 monolayers with enhanced charge mobility for high-performance solar cells
    Xie, Meiqiu
    Li, Yang
    Liu, Xuhai
    Yang, Jianping
    Li, Hui
    Li, Xing'ao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (35) : 20694 - 20700
  • [30] First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
    Ponce, Samuel
    Li, Wenbin
    Reichardt, Sven
    Giustino, Feliciano
    REPORTS ON PROGRESS IN PHYSICS, 2020, 83 (03)