On the L-functions of the curves y2 = xl + A

被引:2
|
作者
Masri, Riad [1 ]
机构
[1] McGill Univ, Dept Math, Montreal, PQ H3A 2K6, Canada
关键词
D O I
10.1112/jlms/jdn040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l > 3 be an odd prime and let A be an integer not divisible by l. Let C(A) be the non-singular projective model over of the affine curve C(A): y(2) = x(l) + A. In this paper, we use the theory of Hilbert modular Eisenstein series to obtain a formula for the central value of the Hasse-Weil L-function L(C(A), s) of the curve C(A) when the cyclotomic field (zeta(l)) has ideal class number 1.
引用
收藏
页码:663 / 676
页数:14
相关论文
共 50 条
  • [1] On the arithmetic of the curves y2=xl+A and their Jacobians
    Stoll, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 501 : 171 - 189
  • [2] L-functions of twisted Legendre curves
    Hall, Chris
    JOURNAL OF NUMBER THEORY, 2006, 119 (01) : 128 - 147
  • [3] On the L-function of the curves y2 = x5+A
    Stoll, M
    Yang, TH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 273 - 287
  • [4] On the vanishing of twisted L-functions of elliptic curves
    David, C
    Fearnley, J
    Kisilevsky, H
    EXPERIMENTAL MATHEMATICS, 2004, 13 (02) : 185 - 198
  • [5] L-FUNCTIONS OF ELLIPTIC CURVES AND FIBONACCI NUMBERS
    Luca, Florian
    Yalciner, Aynur
    FIBONACCI QUARTERLY, 2013, 51 (02): : 112 - 118
  • [6] The universality of the derivatives of L-functions of elliptic curves
    Garbaliauskiene, V.
    Laurincikas, A.
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2007, : 24 - 29
  • [7] ON L-FUNCTIONS OF QUADRATIC Q-CURVES
    Bruin, Peter
    Ferraguti, Andrea
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 459 - 499
  • [8] Families of curves with Galois action and their L-functions
    Greither, Cornelius
    JOURNAL OF NUMBER THEORY, 2015, 154 : 292 - 323
  • [9] L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES
    Luca, Florian
    Oyono, Roger
    Yalciner, Aynur
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 509 - 519
  • [10] L-functions of elliptic curves modulo integers
    Boudreau, Felix Baril
    JOURNAL OF NUMBER THEORY, 2024, 256 : 218 - 252