Random threshold growth dynamics

被引:0
|
作者
Bohman, T
Gravner, J
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
D O I
10.1002/(SICI)1098-2418(199908)15:1<93::AID-RSA4>3.0.CO;2-K
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A site in Z(2) becomes occupied with a certain probability as soon as it sees at least a threshold number of already occupied sites in its neighborhood. Such randomly growing sets have the following regularity property: a large fully occupied set exists within a fixed distance (which does not increase with time) of every occupied point. This property suffices to prove convergence to an asymptotic shape. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:93 / 111
页数:19
相关论文
共 50 条
  • [31] Random threshold classifier functioning analysis
    Zhora, D.V.
    Kibernetika i Sistemnyj Analiz, 2003, (03): : 72 - 91
  • [32] CONNECTIVITY THRESHOLD FOR RANDOM CHORDAL GRAPHS
    MCMORRIS, FR
    SCHEINERMAN, ER
    GRAPHS AND COMBINATORICS, 1991, 7 (02) : 177 - 181
  • [33] Threshold conditions for a random laser mode
    Bahoura, M
    Noginova, N
    Morris, KJ
    Zhu, GH
    Williams, S
    Novak, J
    Fowlkes, I
    Franz, A
    Noginov, MA
    LASER CRYSTALS, GLASSES, AND NONLINEAR MATERIALS GROWTH AND CHARACTERIZATION, 2003, 4970 : 118 - 127
  • [34] Threshold for the expected measure of random polytopes
    Silouanos Brazitikos
    Apostolos Giannopoulos
    Minas Pafis
    Mathematische Annalen, 2024, 388 : 2991 - 3024
  • [35] Approximating the unsatisfiability threshold of random formulas
    Kirousis, LM
    Kranakis, E
    Krizanc, D
    Stamatiou, YC
    RANDOM STRUCTURES & ALGORITHMS, 1998, 12 (03) : 253 - 269
  • [36] Threshold for the expected measure of random polytopes
    Brazitikos, Silouanos
    Giannopoulos, Apostolos
    Pafis, Minas
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2991 - 3024
  • [37] THRESHOLD OF CONDUCTIVITY FOR A RANDOM CUBIC STRUCTURE
    ZHIKOV, VV
    MATHEMATICAL NOTES, 1992, 52 (5-6) : 1181 - 1187
  • [38] Random tonic surfaces and a threshold for smoothness
    Yang, Jay
    JOURNAL OF ALGEBRA, 2019, 524 : 19 - 34
  • [39] The Satisfiability Threshold For Random Linear Equations
    Peter Ayre
    Amin Coja-Oghlan
    Pu Gao
    Noëla Müller
    Combinatorica, 2020, 40 : 179 - 235
  • [40] The Satisfiability Threshold For Random Linear Equations
    Ayre, Peter
    Coja-Oghlan, Amin
    Gao, Pu
    Mueller, Noela
    COMBINATORICA, 2020, 40 (02) : 179 - 235