Adaptive hp-Finite Element Computations for Time-Harmonic Maxwell's Equations

被引:11
|
作者
Jiang, Xue [1 ]
Zhang, Linbo [1 ]
Zheng, Weiying [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
hp-adaptive finite element method; Maxwell's equations; eddy current problem; a posteriori error estimate; P-VERSION; REFINEMENT; MODEL; ALGORITHM;
D O I
10.4208/cicp.231111.090312a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, hp-adaptive finite element methods are studied for time-harmonic Maxwell's equations. We propose the parallel hp-adaptive algorithms on conforming unstructured tetrahedral meshes based on residual-based a posteriori error estimates. Extensive numerical experiments are reported to investigate the efficiency of the hp-adaptive methods for point singularities, edge singularities, and an engineering benchmark problem of Maxwell's equations. The hp-adaptive methods show much better performance than the h-adaptive method.
引用
收藏
页码:559 / 582
页数:24
相关论文
共 50 条
  • [41] hp-adaptive finite elements for Maxwell's equations
    Demkowicz, L
    COMPUTATIONAL ELECTROMAGNETICS, 2003, 28 : 69 - +
  • [42] Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7151 - 7175
  • [43] Lp estimates of time-harmonic Maxwell's equations in a bounded domain
    Bao, Gang
    Li, Ying
    Zhou, Zhengfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) : 3674 - 3686
  • [44] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522
  • [45] Homogenization of time-harmonic Maxwell's equations in nonhomogeneous plasmonic structures
    Maier, Matthias
    Margetis, Dionisios
    Mellet, Antoine
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 377
  • [46] Finite elements for the time harmonic Maxwell's equations
    Boffi, D
    COMPUTATIONAL ELECTROMAGNETICS, 2003, 28 : 11 - +
  • [47] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [48] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [49] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [50] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67