Upper bounds for fundamental solutions to non-local diffusion equations with divergence free drift

被引:14
|
作者
Maekawa, Yasunori [1 ]
Miura, Hideyuki [2 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Math, Kobe, Hyogo 6578501, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Non-local diffusion; Divergence free drift; Fundamental solutions; Pointwise upper bound; GLOBAL WELL-POSEDNESS; INEQUALITIES;
D O I
10.1016/j.jfa.2013.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some non-local diffusion equations in the presence of a divergence free drift term, where the diffusion operators are related to certain Dirichlet forms of jump type. We derive pointwise upper bounds for fundamental solutions of the equations under weak assumptions for the velocity of the drift term. Our class of the velocity includes functions with the scale-critical regularity and some growing functions at spatial infinity. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2245 / 2268
页数:24
相关论文
共 50 条
  • [31] MULTIPLE SOLUTIONS FOR PERTURBED NON-LOCAL FRACTIONAL LAPLACIAN EQUATIONS
    Ferrara, Massimiliano
    Guerrini, Luca
    Zhang, Binlin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [32] GLOBAL SOLUTIONS TO THE NON-LOCAL NAVIER-STOKES EQUATIONS
    Azevedo, Joelma
    Pozo, Juan Carlos
    Viana, Arlucio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2515 - 2535
  • [33] Multiplicity of solutions for a class of superlinear non-local fractional equations
    Zhang, Binlin
    Ferrara, Massimiliano
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (05) : 583 - 595
  • [34] SIGN-CHANGING SOLUTIONS FOR NON-LOCAL ELLIPTIC EQUATIONS
    Luo, Huxiao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [35] Stochastic solutions to evolution equations of non-local branching processes
    Beznea, Lucian
    Lupascu-Stamate, Oana
    Vrabie, Catalin Ioan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 200
  • [36] On uniqueness and monotonicity of solutions of non-local reaction diffusion equation
    Jérôme Coville
    Annali di Matematica Pura ed Applicata, 2006, 185 : 461 - 485
  • [37] GROUND STATE SOLUTIONS FOR NON-LOCAL FRACTIONAL SCHRODINGER EQUATIONS
    Pu, Yang
    Liu, Jiu
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [38] ODEMethods in Non-Local Equations
    Ao, Weiwei
    Chan, Hardy
    DelaTorre, Azahara
    Fontelos, Marco A.
    Gonzalez, Maria del Mar
    Wei, Juncheng
    JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (04): : 370 - 401
  • [39] On the unique continuation of solutions to non-local non-linear dispersive equations
    Kenig, C. E.
    Pilod, D.
    Ponce, G.
    Vega, L.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (08) : 872 - 886
  • [40] CONSTRUCTION OF RADIAL AND NON-RADIAL SOLUTIONS FOR LOCAL AND NON-LOCAL EQUATIONS OF LIOUVILLE TYPE
    Popivanov, Petar
    Slavova, Angela
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (10): : 1442 - 1452