Extreme events in bimodal systems

被引:3
|
作者
Nicolis, S. C. [1 ]
Nicolis, C. [2 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Inst Royal Meteorol Belg, B-1180 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevE.78.036222
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The extreme value statistics of systems possessing a two-hump probability density of the relevant variable, in which the left peak is more pronounced than the right one, is studied. It is shown that systems of this type display a nontrivial transient behavior in the form of anomalous fluctuations around the mean, for certain (finite) ranges of observational time windows. The results are illustrated on independent identically distributed random variables, systems possessing two locally stable states and subjected to additive white noise, and dynamical systems in the regime of deterministic chaos.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Statistical physics and dynamical systems perspectives on geophysical extreme events
    Faranda, D.
    Messori, G.
    Alberti, T.
    Alvarez-Castro, C.
    Caby, T.
    Cavicchia, L.
    Coppola, E.
    Donner, R. V.
    Dubrulle, B.
    Galfi, V. M.
    Holmberg, E.
    Lembo, V.
    Noyelle, R.
    Yiou, P.
    Spagnolo, B.
    Valenti, D.
    Vaienti, S.
    Wormell, C.
    PHYSICAL REVIEW E, 2024, 110 (04)
  • [22] Modelling of extreme precipitation events in risk analysis of water systems
    Kuipers, F
    Kok, M
    Vermeulen, CJM
    STOCHASTIC HYDRAULICS 2000, 2000, : 445 - 452
  • [23] CLIMATE CHANGE AND EXTREME EVENTS: VULNERABILITY OF ENERGY SYSTEMS IN CUBA
    Ruiz, Elieza Meneses
    Carbonell, Leonor Turtos
    Escobar, Ilse Berdellans
    Lopez, Ileana
    Martini, David Perez
    Zucchetti, Massimo
    Alfstad, Thomas
    FRESENIUS ENVIRONMENTAL BULLETIN, 2013, 22 (01): : 74 - 80
  • [24] Return time statistics of extreme events in deterministic dynamical systems
    Nicolis, C.
    Nicolis, S. C.
    EPL, 2007, 80 (04)
  • [25] Classification and prioritization of essential systems in hospitals under extreme events
    Myrtle, RC
    Masri, SE
    Nigbor, RL
    Caffrey, JP
    EARTHQUAKE SPECTRA, 2005, 21 (03) : 779 - 802
  • [26] Mechanism for stickiness suppression during extreme events in Hamiltonian systems
    Krueger, Taline Suellen
    Galuzio, Paulo Paneque
    Prado, Thiago de Lima
    Viana, Ricardo Luiz
    Szezech, Jose Danilo, Jr.
    Lopes, Sergio Roberto
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [27] Using machine learning to predict extreme events in complex systems
    Qi, Di
    Majda, Andrew J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (01) : 52 - 59
  • [28] Routes to extreme events in dynamical systems: Dynamical and statistical characteristics
    Mishra, Arindam
    Leo Kingston, S.
    Hens, Chittaranjan
    Kapitaniak, Tomasz
    Feudel, Ulrike
    Dana, Syamal K.
    CHAOS, 2020, 30 (06)
  • [29] Recent developments of extreme wave events in integrable resonant systems
    Pan Chang-Chang
    Fabio, Baronio
    Chen Shi-Hua
    ACTA PHYSICA SINICA, 2020, 69 (01)
  • [30] Extreme value analysis of bimodal Gaussian processes
    Low, Y. M.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (14) : 3458 - 3472