Etch-Back Silicon Texturing for Light-Trapping in Electron Beam Evaporated Thin-Film Polycrystalline Silicon Solar Cells

被引:14
|
作者
Wang, Qian [1 ]
Soderstrom, Thomas [1 ]
Omaki, Kazuo [1 ]
Lennon, Alison [1 ]
Varlamov, Sergey [1 ]
机构
[1] UNSW, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia
关键词
Thin-film solar cells; polycrystalline silicon; light-trapping; silicon texturing; GLASS;
D O I
10.1016/j.egypro.2012.02.026
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective light trapping is critical for polycrystalline silicon thin-film solar cells to generate sufficiently high photocurrent. Glass substrate texturing is a standard and very effective light-trapping approach for poly-Si solar cells fabricated by plasma enhanced chemical vapour deposition but it cannot be applied to poly-Si cells deposited by electron beam evaporation, which is a preferred deposition process. In this study light-trapping is implemented by texturing of the rear surface of e-beam poly-Si films deposited on planar glass. Water-based solutions of KOH, NH4F and NH4F/H2O2 are found to be able to texture poly-Si films and, thus, to significantly improve light-trapping. The related texturing processes and resulting textures are characterised by Si etching rates, the surface roughness versus removed Si thickness, texture angle distributions, optical absorption and spectral response enhancement. The RMS roughness increases with the removed thickness and can be as large as 276 nm. Also, the texture angle distribution can reach its maximum at about 20 and has a long tail of larger angles. The absorption at 800 nm can increase up to 75% compared to 30-40% in planar films. The short-circuit current of 26.6 mA/cm(2) was demonstrated for a cell made of 3.6 mu m thick poly-Si film textured by the KOH solution, which is similar to 21% enhancement compared to a reference planar cell with a rear reflector. A larger roughness and steeper texture angles produced by NH4F-based etching solutions compared to KOH-based textures indicate that even higher currents are achievable for e-beam poly-Si thin-film cells on planar glass. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the organizing committee of International Conference on Materials for Advanced Technologies.
引用
收藏
页码:220 / 228
页数:9
相关论文
共 50 条
  • [41] Polycrystalline silicon on glass for thin-film solar cells
    Martin A. Green
    Applied Physics A, 2009, 96 : 153 - 159
  • [42] Polycrystalline silicon thin-film solar cells on glass
    Gall, S.
    Becker, C.
    Conrad, E.
    Dogan, P.
    Fenske, F.
    Gorka, B.
    Lee, K. Y.
    Rau, B.
    Ruske, F.
    Rech, B.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 1004 - 1008
  • [43] Light Trapping for Thin Silicon Solar Cells by Femtosecond Laser Texturing
    Lee, Benjamin G.
    Lin, Yu-Ting
    Sher, Meng-Ju
    Mazur, Eric
    Branz, Howard M.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 1606 - 1608
  • [44] Light trapping in thin-film silicon solar cells with integrated diffraction grating
    Dewan, Rahul
    Knipp, Dietmar
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (07)
  • [45] Photonic light trapping and electrical transport in thin-film silicon solar cells
    Andreani, Lucio Claudio
    Bozzola, Angelo
    Kowalczewski, Piotr
    Liscidini, Marco
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 135 : 78 - 92
  • [46] Light trapping in thin-film silicon solar cells with submicron surface texture
    Dewan, Rahul
    Marinkovic, Marko
    Noriega, Rodrigo
    Phadke, Sujay
    Salleo, Alberto
    Knipp, Dietmar
    OPTICS EXPRESS, 2009, 17 (25): : 23058 - 23065
  • [47] Nanoparticle-enhanced light trapping in thin-film silicon solar cells
    Ouyang, Zi
    Zhao, Xiang
    Varlamov, Sergey
    Tao, Yuguo
    Wong, Johnson
    Pillai, Supriya
    PROGRESS IN PHOTOVOLTAICS, 2011, 19 (08): : 917 - 926
  • [48] Light trapping regimes in thin-film silicon solar cells with a photonic pattern
    Zanotto, Simone
    Liscidini, Marco
    Andreani, Lucio Claudio
    OPTICS EXPRESS, 2010, 18 (05): : 4260 - 4274
  • [49] LIGHT TRAPPING FOR THIN-FILM SILICON SOLAR-CELLS FABRICATED ON INSULATOR
    SASAKI, H
    MORIKAWA, H
    MATSUNO, Y
    DEGUCHI, M
    ISHIHARA, T
    KUMABE, H
    MUROTANI, T
    MITSUI, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1994, 33 (6A): : 3389 - 3392
  • [50] Thin-film silicon solar cells with efficient periodic light trapping texture
    Haase, Christian
    Stiebig, Helmut
    APPLIED PHYSICS LETTERS, 2007, 91 (06)