Semi-Supervised Eigenbasis Novelty Detection

被引:0
|
作者
Thompson, David R. [1 ]
Majid, Walid A. [1 ]
Reed, Colorado J. [1 ]
Wagstaff, Kiri L. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
关键词
novelty detection; time series analysis; radio astronomy; machine learning; anomaly detection; radio transients; fast transients; semi-supervised learning;
D O I
10.1002/sam.11148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses sparse, adaptive eigenbases to combine (1) prior knowledge about uninteresting signals with (2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply Semi-Supervised Eigenbasis Novelty Detection (SSEND) to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [41] Semi-supervised standardized detection of extrasolar planets
    Sulis, S.
    Mary, D.
    Bigot, L.
    Deleuil, M.
    ASTRONOMY & ASTROPHYSICS, 2022, 667
  • [42] Semi-supervised Active Salient Object Detection
    Lv, Yunqiu
    Liu, Bowen
    Zhang, Jing
    Dai, Yuchao
    Li, Aixuan
    Zhang, Tong
    PATTERN RECOGNITION, 2022, 123
  • [43] A semi-supervised learning model for intrusion detection
    Jiang, Eric P.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (03): : 343 - 353
  • [44] Label Matching Semi-Supervised Object Detection
    Chen, Binbin
    Chen, Weijie
    Yang, Shicai
    Xuan, Yunyi
    Song, Jie
    Xie, Di
    Pu, Shiliang
    Song, Mingli
    Zhuang, Yueting
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14361 - 14370
  • [45] Improving Localization for Semi-Supervised Object Detection
    Rossi, Leonardo
    Karimi, Akbar
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 516 - 527
  • [46] SEMI-SUPERVISED GAS DETECTION IN HYPERSPECTRAL IMAGING
    Ozturk, Safak
    Artan, Yusuf
    Esin, Yunus Emre
    Yaman, Mustafa
    Erdem, Ahmet
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 469 - 472
  • [47] Supervised and semi-supervised classifiers for the detection of flood-prone areas
    Giorgio Gnecco
    Rita Morisi
    Giorgio Roth
    Marcello Sanguineti
    Angela Celeste Taramasso
    Soft Computing, 2017, 21 : 3673 - 3685
  • [48] Introducing a Method for Combining supervised and semi-supervised methods in fraud detection
    Eshghi, Abdollah
    Kargari, Mehrdad
    PROCEEDINGS OF 2019 15TH IRAN INTERNATIONAL INDUSTRIAL ENGINEERING CONFERENCE (IIIEC), 2019, : 23 - 30
  • [49] Supervised and semi-supervised classifiers for the detection of flood-prone areas
    Gnecco, Giorgio
    Morisi, Rita
    Roth, Giorgio
    Sanguineti, Marcello
    Taramasso, Angela Celeste
    SOFT COMPUTING, 2017, 21 (13) : 3673 - 3685
  • [50] Cast Shadow Detection Based on Semi-supervised Learning
    Jarraya, Salma Kammoun
    Boukhriss, Rania Rebai
    Hammami, Mohamed
    Ben-Abdallah, Hanene
    IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 19 - 26