Evaluating Uncertainty of Microwave Calibration Models With Regression Residuals

被引:0
|
作者
Williams, Dylan F. [1 ]
Jamroz, Benjamin F. [1 ]
Rezac, Jacob D. [1 ]
Jones, Robert D. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
关键词
Calibration; Uncertainty; Microwave measurement; Microwave theory and techniques; Measurement uncertainty; Biological system modeling; Monte Carlo methods; Coupling corrections; microwave calibration; on-wafer measurement; uncertainty; SIMULTANEOUS CONFIDENCE BANDS; BOOTSTRAP METHODS; JACKKNIFE;
D O I
10.1109/TMTT.2020.2983358
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the sensitivity-analysis and Monte Carlo algorithms for evaluating the uncertainty of multivariate microwave calibration models with regression residuals. We then use synthetic data to verify the performance of the algorithms and explore their limitations in the presence of correlated errors. The uncertainties that we evaluate can be used to estimate the total uncertainty of a calibrated measurement when combined with the prediction intervals for that measurement.
引用
收藏
页码:2454 / 2467
页数:14
相关论文
共 50 条
  • [41] Standard Uncertainty Estimation on Polynomial Regression Models
    Rajan, Arvind
    Kuang, Ye Chow
    Ooi, Melanie Po-Leen
    Demidenko, Serge
    2014 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2014, : 207 - 212
  • [42] ANALYZING RESIDUALS IN CALIBRATION PROBLEMS
    OMAN, SD
    TECHNOMETRICS, 1984, 26 (04) : 347 - 353
  • [43] Developing Models for Type-N Coaxial VNA Calibration Kits within the NIST Microwave Uncertainty Framework
    Jargon, Jeffrey A.
    Williams, Dylan F.
    Hale, Paul D.
    2016 87TH ARFTG MICROWAVE MEASUREMENT CONFERENCE (ARFTG), 2016,
  • [44] Residuals and regression diagnostics: focusing on logistic regression
    Zhang, Zhongheng
    ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (10)
  • [45] New Directional Residuals to Treat Shape Changes Using Spherical Regression Models
    Meisam Moghimbeygi
    Mousa Golalizadeh
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1721 - 1730
  • [46] Default Bayesian priors for regression models with first-order autoregressive residuals
    Ghosh, M
    Heo, J
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (03) : 269 - 282
  • [47] Evaluating the uncertainty of input quantities in measurement models
    Possolo, Antonio
    Elster, Clemens
    METROLOGIA, 2014, 51 (03) : 339 - 353
  • [48] RESIDUALS IN NONLINEAR-REGRESSION
    COOK, RD
    TSAI, CL
    BIOMETRIKA, 1985, 72 (01) : 23 - 29
  • [49] Deviance residuals in generalised log-gamma regression models with censored observations
    Ortega, Edwin M. M.
    Paula, Gilberto A.
    Bolfarine, Heleno
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (08) : 747 - 764
  • [50] New Directional Residuals to Treat Shape Changes Using Spherical Regression Models
    Moghimbeygi, Meisam
    Golalizadeh, Mousa
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (06): : 1721 - 1730