Mourre's method and smoothing properties of dispersive equations

被引:23
|
作者
Hoshiro, T [1 ]
机构
[1] Himeji Inst Technol, Dept Math, Himeji, Hyogo 6712201, Japan
关键词
D O I
10.1007/s002200050581
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to point out that Mourre's method in spectral theory is useful and powerful in studying the smoothing effect of dispersive equations. Especially we will see that the smoothing effect is a quite general phenomenon, even for operators with variable coefficients.
引用
收藏
页码:255 / 265
页数:11
相关论文
共 50 条
  • [41] Dispersive Properties for Discrete Schrödinger Equations
    Liviu I. Ignat
    Diana Stan
    Journal of Fourier Analysis and Applications, 2011, 17 : 1035 - 1065
  • [42] Homogenized discontinuous Galerkin method for Maxwell's equations in periodic structured dispersive media
    Li, Jichun
    Waters, Jiajia
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 247 - 255
  • [43] MULTIGRID METHOD FOR DIFFUSION EQUATIONS BASED ON ADAPTIVE SMOOTHING
    Feodoritova, O. B.
    Novikova, N. D.
    Zhukov, V. T.
    MATHEMATICA MONTISNIGRI, 2016, 36 : 14 - 26
  • [44] Smoothing Newton method for operator equations in Banach spaces
    Liu J.
    Gao Y.
    Journal of Applied Mathematics and Computing, 2008, 28 (1-2) : 447 - 460
  • [45] LOCAL SMOOTHING AND CONVERGENCE PROPERTIES OF SCHRODINGER TYPE EQUATIONS
    BENARTZI, M
    DEVINATZ, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) : 231 - 254
  • [46] Smoothing properties of nonlinear stochastic equations in Hilbert spaces
    Fuhrman, Marco
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (04): : 445 - 464
  • [47] Global smoothing properties of generalized Schrödinger equations
    Mitsuru Sugimoto
    Journal d’Analyse Mathematique, 1998, 76 : 191 - 204
  • [48] Alternating Group Method For Fifth Order Dispersive Equations
    Zheng, Bin
    Feng, Qinghua
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 84 - +
  • [49] THE METHOD OF CONCENTRATION COMPACTNESS AND DISPERSIVE HAMILTONIAN EVOLUTION EQUATIONS
    Schlag, W.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 174 - 196
  • [50] Dispersive properties of the Natural Element Method
    Bueche, D
    Sukumar, N
    Moran, B
    COMPUTATIONAL MECHANICS, 2000, 25 (2-3) : 207 - 219