Frog classification using machine learning techniques

被引:107
|
作者
Huang, Chenn-Jung
Yang, Yi-Ju
Yang, Dian-Xiu
Chen, You-Jia
机构
[1] Department of Computer and Information Science, National Hualien University of Education
[2] Institute of Ecology and Environmental Education, National Hualien University of Education
关键词
Classification; Feature extraction; Segmentation; Support vector machines; kth nearest neighboring;
D O I
10.1016/j.eswa.2008.02.059
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An automatic frog sound identification system is developed in this work to provide the public to easily consult online. The sound samples are first properly segmented into syllables. Then three features, spectral centroid, signal bandwidth and threshold-crossing rate, are extracted to serve as the parameters for the frog sound classification. Two well-known classifiers, kNN and SVM, are adopted to recognize the frog species based on the three extracted features. The experimental results show that the average classification accuracy rate can be up to 89.05% and 90.30% for kNN and SVM classifiers, respectively. The effectiveness of the proposed on-line recognition system is thus verified. (C) 2008 Published by Elsevier Ltd.
引用
收藏
页码:3737 / 3743
页数:7
相关论文
共 50 条
  • [41] A methodology for the classification of quality of requirements using machine learning techniques
    Parra, Eugenio
    Dimou, Christos
    Llorens, Juan
    Moreno, Valentin
    Fraga, Anabel
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2015, 67 : 180 - 195
  • [42] ECG Signal Classification Using Various Machine Learning Techniques
    S Celin
    K. Vasanth
    [J]. Journal of Medical Systems, 2018, 42
  • [43] Classification of geogrid reinforcement in aggregate using machine learning techniques
    Samuel Olamide Aregbesola
    Yong-Hoon Byun
    [J]. International Journal of Geo-Engineering, 15
  • [44] Classification of Diabetic Patient Data Using Machine Learning Techniques
    Singh, Pankaj Pratap
    Prasad, Shitala
    Das, Bhaskarjyoti
    Poddar, Upasana
    Choudhury, Dibarun Roy
    [J]. AMBIENT COMMUNICATIONS AND COMPUTER SYSTEMS, RACCCS 2017, 2018, 696 : 427 - 436
  • [45] Aquatic weed automatic classification using machine learning techniques
    Pereira, Luis A. M.
    Nakamura, Rodrigo Y. M.
    de Souza, Guilherme F. S.
    Martins, Dagoberto
    Papa, Joao P.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2012, 87 : 56 - 63
  • [46] Classification of Corneal Nerve Images Using Machine Learning Techniques
    Salahuddin, Tooba
    Qidwai, Uvais
    [J]. INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2019, 11 (03): : 1 - 9
  • [47] Classification of rocks radionuclide data using machine learning techniques
    Abdul Razzaq Khan
    Adil Aslam Mir
    Sharjil Saeed
    Muhammad Rafique
    Khawaja M. Asim
    Talat Iqbal
    Abdul Jabbar
    Saeed Ur Rahman
    [J]. Acta Geophysica, 2018, 66 : 1073 - 1079
  • [48] Arrhythmia Classification Using Biosignal Analysis and Machine Learning Techniques
    Nivia, Jesus E.
    Ramirez, Yesika M.
    Camargo, Jorge E.
    [J]. SMART HEALTH, ICSH 2015, 2016, 9545 : 143 - 153
  • [49] EEG motor imagery classification using machine learning techniques
    Paez-Amaro, R. T.
    Moreno-Barbosa, E.
    Hernandez-Lopez, J. M.
    Zepeda-Fernandez, C. H.
    Rebolledo-Herrera, L. F.
    de Celis-Alonso, B.
    [J]. REVISTA MEXICANA DE FISICA, 2022, 68 (04)
  • [50] Physical Activity Monitoring and Classification Using Machine Learning Techniques
    Alsareii, Saeed Ali
    Awais, Muhammad
    Alamri, Abdulrahman Manaa
    AlAsmari, Mansour Yousef
    Irfan, Muhammad
    Aslam, Nauman
    Raza, Mohsin
    [J]. LIFE-BASEL, 2022, 12 (08):