An adaptive variational multiscale method for convection-diffusion problems

被引:25
|
作者
Larson, Mats G. [2 ]
Malqvist, Axel [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Umea Univ, Dept Math, SE-90187 Umea, Sweden
来源
关键词
variational multiscale method; adaptivity; error estimation; FINITE-ELEMENT METHODS; POROUS-MEDIA; ELLIPTIC PROBLEMS; GREENS-FUNCTIONS; EQUATIONS;
D O I
10.1002/cnm.1106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adaptive variational multiscale method is an extension of the variational multiscale method where the line-scale part of the solution is approximated by a sum of numerically computed solutions to localized subgrid problems. Furthermore, the crucial discretization parameters are chosen automatically by an adaptive algorithm based on a posteriori error estimates. This method has been developed for diffusion-dominated problems and applied to multiscale problems that arise in oil reservoir Simulation. In this paper, we extend the method to convection-diffusion problems. We present it duality based a posteriori error representation formula and an adaptive algorithm that tunes the fine-scale mesh size and the patch sizes of the local problems. Numerical results show rapid convergence of the adaptive algorithm. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 50 条
  • [21] Convection-Diffusion Problems
    Linss, Torsten
    LAYER-ADAPTED MESHES FOR REACTION-CONVECTION-DIFFUSION PROBLEMS, 2010, 1985 : 257 - 307
  • [22] A hybrid multigrid method for convection-diffusion problems
    Khelifi, S. Chaabane
    Mechitoua, N.
    Huelsemann, F.
    Magoules, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 711 - 719
  • [23] Boundary knot method for convection-diffusion problems
    Muzik, Juraj
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 582 - 588
  • [24] THE MORTAR ELEMENT METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    ACHDOU, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (01): : 117 - 123
  • [25] A fractional step θ-method for convection-diffusion problems
    Chrispell, J. C.
    Ervin, V. J.
    Jenkins, E. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 204 - 218
  • [26] THE CHARACTERISTIC METHOD FOR THE STATIONS CONVECTION-DIFFUSION PROBLEMS
    BERMUDEZ, A
    DURANY, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01): : 7 - 26
  • [27] On an Adaptive Semirefinement Multigrid Algorithm for Convection-Diffusion Problems
    Vasileva, Daniela
    NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 572 - 579
  • [28] A STABILIZED GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    DEGROEN, PPN
    VANVELDHUIZEN, M
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (02): : 274 - 297
  • [29] An efficient variational multiscale element free Galerkin method based on adaptive TR-AB2 scheme for convection-diffusion equations
    Zhang, Xiaohua
    Xiang, Shuyi
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 158 : 211 - 223
  • [30] Multigrid method for solving convection-diffusion problems with dominant convection
    Muratova, Galina V.
    Andreeva, Evgeniya M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 226 (01) : 77 - 83