An adaptive variational multiscale method for convection-diffusion problems

被引:25
|
作者
Larson, Mats G. [2 ]
Malqvist, Axel [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Umea Univ, Dept Math, SE-90187 Umea, Sweden
来源
关键词
variational multiscale method; adaptivity; error estimation; FINITE-ELEMENT METHODS; POROUS-MEDIA; ELLIPTIC PROBLEMS; GREENS-FUNCTIONS; EQUATIONS;
D O I
10.1002/cnm.1106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adaptive variational multiscale method is an extension of the variational multiscale method where the line-scale part of the solution is approximated by a sum of numerically computed solutions to localized subgrid problems. Furthermore, the crucial discretization parameters are chosen automatically by an adaptive algorithm based on a posteriori error estimates. This method has been developed for diffusion-dominated problems and applied to multiscale problems that arise in oil reservoir Simulation. In this paper, we extend the method to convection-diffusion problems. We present it duality based a posteriori error representation formula and an adaptive algorithm that tunes the fine-scale mesh size and the patch sizes of the local problems. Numerical results show rapid convergence of the adaptive algorithm. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 50 条
  • [1] An adaptive variational multiscale element free Galerkin method for convection-diffusion equations
    Zhang, Xiaohua
    Zhang, Ping
    Qin, Wenjie
    Shi, Xiaotao
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 4) : 3373 - 3390
  • [2] Variational multiscale method for the transient convection-diffusion equations
    Zhu, Hai-Tao
    Ouyang, Jie
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2010, 27 (04): : 601 - 606
  • [3] A Hybrid Variational Multiscale Element-Free Galerkin Method for Convection-Diffusion Problems
    Wang, Jufeng
    Sun, Fengxin
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2019, 11 (07)
  • [4] An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems
    Gravemeier, Volker
    Gee, Michael W.
    Wall, Wolfgang A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (47-48) : 3821 - 3835
  • [5] A variational multiscale interpolating element-free Galerkin method for convection-diffusion and Stokes problems
    Zhang, Tao
    Li, Xiaolin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 82 : 185 - 193
  • [6] Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations: Application to convection-diffusion problems
    Bazile, A.
    Hachem, E.
    Larroya-Huguet, J. C.
    Mesri, Y.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 331 : 94 - 115
  • [7] A VARIATIONAL FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS
    ORTIZ, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1985, 23 (07) : 717 - 731
  • [8] Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems
    Buffa, A.
    Hughes, T. J. R.
    Sangalli, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1420 - 1440
  • [9] Variational Multiscale Element Free Galerkin Method for Three-dimensional Steady Convection-Diffusion Problems
    Cao, Xiaoting
    Zhang, Xiaohua
    IAENG International Journal of Applied Mathematics, 2022, 52 (02)
  • [10] A two-level variational multiscale method for convection-dominated convection-diffusion equations
    John, Volker
    Kaya, Songul
    Layton, William
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 4594 - 4603