On-chip transformation optics for multimode waveguide bends

被引:258
|
作者
Gabrielli, Lucas H. [1 ]
Liu, David [2 ]
Johnson, Steven G. [3 ]
Lipson, Michal [1 ,4 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Cornell Univ, Kavli Inst Cornell, Ithaca, NY 14853 USA
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
美国国家科学基金会;
关键词
DIVISION MULTIPLEXED TRANSMISSION; LUNEBURG LENS; FABRICATION; GRADIENT; DESIGN;
D O I
10.1038/ncomms2232
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Current optical communication systems rely almost exclusively on multimode fibres for short- and medium-haul transmissions, and are now expanding into the long-haul arena. Ultra-high bandwidth applications are the main drive for this expansion, based on the ability to spatially multiplex data channels in multimode systems. Integrated photonics, on the other hand, although largely responsible for today's telecommunications, continues to operate almost strictly in the single-mode regime. This is because multimode waveguides cannot be compactly routed on-chip without significant inter-mode coupling, which impairs their data rate and prevents the use of modal multiplexing. Here we propose a platform for on-chip multimode devices with minimal inter-mode coupling, opening up the possibilities for integrated multimode optics. Our work combines a novel theoretical approach-large-scale inverse design of transformation optics to maximize performance within fabrication constraints-with unique grayscale-lithography fabrication of an exemplary device: a low-crosstalk multimode waveguide bend.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Insertion loss and misalignment tolerance in multimode tapered waveguide bends
    Papakonstantinou, Ioannis
    Selviah, David R.
    Wang, Kai
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (9-12) : 1000 - 1002
  • [22] Ultra-Sharp Multimode Waveguide Bends with Subwavelength Gratings
    Wu, Hao
    Li, Chenlei
    Song, Lijia
    Tsang, Hon-Ki
    Bowers, John E.
    Dai, Daoxin
    LASER & PHOTONICS REVIEWS, 2019, 13 (02)
  • [23] Inverse design of multimode silicon waveguide bends by topology optimization
    Cheng, Rui
    Li, Jianquan
    JOURNAL OF NANOPHOTONICS, 2022, 16 (02)
  • [24] INFRARED OPTICS Nonmechanical on-chip waveguide device steers mid-infrared beams
    Overton, Gail
    LASER FOCUS WORLD, 2019, 55 (01): : 22 - 23
  • [25] On-Chip 90° Polarization Rotator using Wave Coupling through an Intermediate, Multimode, Uniform Waveguide
    Yue, Yang
    Zhang, Lin
    Song, Muping
    Beausoleil, Raymond G.
    Willner, Alan E.
    OFC: 2009 CONFERENCE ON OPTICAL FIBER COMMUNICATION, VOLS 1-5, 2009, : 2243 - +
  • [26] On-chip transformation of bacteria
    Nagamine, K
    Onodera, S
    Torisawa, Y
    Yasukawa, T
    Shiku, H
    Matsue, T
    ANALYTICAL CHEMISTRY, 2005, 77 (13) : 4278 - 4281
  • [27] Tunable transformation optical waveguide bends in liquid
    Liu, Hai L.
    Zhu, Xiao Q.
    Liang, Li
    Zhang, Xu M.
    Yang, Yi
    OPTICA, 2017, 4 (08): : 839 - 846
  • [28] On-chip quantum optics and integrated optomechanics
    Hoch, David
    Sommer, Timo
    Mueller, Sebastian
    Poot, Menno
    TURKISH JOURNAL OF PHYSICS, 2020, 44 (03): : 239 - 246
  • [29] Prototype development for chip-chip interconnection by multimode waveguide
    Pong, BLS
    Pamidigantham, R
    Premachandran, CS
    PROCEEDINGS OF THE 7TH ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE, VOLS. 1 AND 2, 2005, : 488 - 491
  • [30] FUNDAMENTAL OPTICS On-chip Casimir effect
    Milton, Kimball A.
    NATURE PHOTONICS, 2017, 11 (02) : 73 - 74