Land surface phenology from Copernicus Global Land time series

被引:0
|
作者
Bornez, K. [1 ,2 ]
Verger, A. [1 ,2 ]
Filella, I. [1 ,2 ]
Penuelas, J. [1 ,2 ]
机构
[1] CREAF, Ctr Ecol Res & Forestry Applicat, Cerdanyola Del Valles 08193, Catalonia, Spain
[2] CSIC, Spanish Natl Res Council, GEU, Cerdanyola Del Valles 08193, Catalonia, Spain
基金
欧洲研究理事会;
关键词
phenology; Copernicus Global Land; VEGETATION; PROBA-V; Spirits; VARIABILITY;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The phenology in Europe in the period 1999-2016 was characterized by using of time series of different biophysical variables (LAI, FCOVER, FAPAR and NDVI) estimated from the sensors VEGETATION and PROBA-V in the framework of the Copernicus Global Land Service. The Spirits software was used for the smoothing and processing the time series, as well as for estimating the start, length and end of the phenological season. The comparison with ground observations (PEP-725) of the different phenophases of birch and beech showed a RMSE of similar to 9 days and similar to 16 days for the timing of the SoS and a RMSE of similar to 15 days and similar to 60 days for the timing of the EoS.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Remote Sensing of Land Surface Phenology: Editorial
    Ma, Xuanlong
    Jin, Jiaxin
    Zhu, Xiaolin
    Zhou, Yuke
    Xie, Qiaoyun
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [32] Spatio-Temporal Reconstruction of MODIS NDVI by Regional Land Surface Phenology and Harmonic Analysis of Time-Series
    Padhee, Suman Kumar
    Dutta, Subashisa
    [J]. GISCIENCE & REMOTE SENSING, 2019, 56 (08) : 1261 - 1288
  • [33] Web-Enabled Landsat Data Time Series for Monitoring Urban Heat Island Impacts on Land Surface Phenology
    Krehbiel, Cole P.
    Jackson, Trisha
    Henebry, Geoffrey M.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (05) : 2043 - 2050
  • [34] An Observation-Driven Approach to Improve Vegetation Phenology in a Global Land Surface Model
    Kolassa, Jana
    Reichle, Rolf H.
    Koster, Randal D.
    Liu, Qing
    Mahanama, Sarith
    Zeng, Fan-Wei
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (09)
  • [35] Codominant water control on global interannual variability and trends in land surface phenology and greenness
    Forkel, Matthias
    Migliavacca, Mirco
    Thonicke, Kirsten
    Reichstein, Markus
    Schaphoff, Sibyll
    Weber, Ulrich
    Carvalhais, Nuno
    [J]. GLOBAL CHANGE BIOLOGY, 2015, 21 (09) : 3414 - 3435
  • [36] Uncovering the shifts: land surface phenology in Botswana from satellite observations
    Linganani Kombani
    Samuel Adewale Adelabu
    Olufemi Sunday Durowoju
    Colbert Mutiso Jackson
    [J]. Discover Sustainability, 6 (1):
  • [37] Intercomparison of satellite sensor land surface phenology and ground phenology in Europe
    Rodriguez-Galiano, V. F.
    Dash, J.
    Atkinson, P. M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (07) : 2253 - 2260
  • [38] GEOV2: Improved smoothed and gap filled time series of LAI, FAPAR and FCover 1 km Copernicus Global Land products
    Verger, Aleixandre
    Sanchez-Zapero, Jorge
    Weiss, Marie
    Descals, Adria
    Camacho, Fernando
    Lacaze, Roselyne
    Baret, Frederic
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 123
  • [39] A Comparison of Land Surface Phenology in the Northern Hemisphere Derived from Satellite Remote Sensing and the Community Land Model
    Li, Xiaolu
    Melaas, Eli
    Carrillo, Carlos M.
    Ault, Toby
    Richardson, Andrew D.
    Lawrence, Peter
    Friedl, Mark A.
    Seyednasrollah, Bijan
    Lawrence, David M.
    Young, Adam M.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (06) : 859 - 873
  • [40] An Empirical Assessment of the MODIS Land Cover Dynamics and TIMESAT Land Surface Phenology Algorithms
    Stanimirova, Radost
    Cai, Zhanzhang
    Melaas, Eli K.
    Gray, Josh M.
    Eklundh, Lars
    Jonsson, Per
    Friedl, Mark A.
    [J]. REMOTE SENSING, 2019, 11 (19)