On-Line Estimation of Inertial Parameters Using a Recursive Total Least-Squares Approach

被引:45
|
作者
Kubus, Daniel [1 ]
Kroeger, Torsten [1 ]
Wahl, Friedrich M. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Dept Robot & Proc Control, D-38106 Braunschweig, Germany
关键词
D O I
10.1109/IROS.2008.4650672
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The estimation of the ten inertial parameters of rigid loads, which are attached to manipulators, may benefit several robotics applications, e.g.: force control, object recognition, and pose estimation. These applications require sufficiently accurate, robust, and fast estimation of the inertial parameters. Existing approaches, however, do not allow for robust on-line estimation, since they use standard batch least-squares techniques, which ignore noise in the data matrix. The proposed approach, however, estimates the inertial parameters on-line and very fast (approx. 1.5s), while explicitly considering noise in the data matrix by a total least-squares approach. Apart from estimation equations and estimation approaches, the design of estimation trajectories is addressed in this paper. The performance of the proposed estimation approach is compared with the recursive ordinary least-squares (RLS) and the recursive instrumental variables (RIV) method. Experimental results clearly recommend the proposed recursive total least-squares approach (RTLS).
引用
收藏
页码:3845 / 3852
页数:8
相关论文
共 50 条
  • [31] INTERVAL ESTIMATION OF RESPIRATORY PARAMETERS USING LEAST-SQUARES TECHNIQUES
    DREBES, CB
    MINH, VD
    SHEPHARD, JW
    OGURA, JH
    COMPUTERS AND BIOMEDICAL RESEARCH, 1979, 12 (02): : 149 - 166
  • [32] Estimation of Weibull parameters using a fuzzy least-squares method
    Hung, WL
    Liu, YC
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004, 12 (05) : 701 - 711
  • [34] On the total least-squares estimation for autoregressive model
    Zeng, W.
    Fang, X.
    Lin, Y.
    Huang, X.
    Zhou, Y.
    SURVEY REVIEW, 2018, 50 (359) : 186 - 190
  • [35] A note on constrained total least-squares estimation
    Schaffrin, Burkhard
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 417 (01) : 245 - 258
  • [36] A BAYESIAN APPROACH TO TRACKING WITH KERNEL RECURSIVE LEAST-SQUARES
    Lazaro-Gredilla, Miguel
    Van Vaerenbergh, Steven
    Santamaria, Ignacio
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [37] On the Regularization of Recursive Least-Squares Adaptive Algorithms Using Line Search Methods
    Stanciu, Cristian-Lucian
    Anghel, Cristian
    Ficiu, Ionut-Dorinel
    Elisei-Iliescu, Camelia
    Udrea, Mihnea-Radu
    Stanciu, Lucian
    ELECTRONICS, 2024, 13 (08)
  • [38] Localization of wideband signals using least-squares and total least-squares approaches
    Valaee, S
    Champagne, B
    Kabal, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1213 - 1222
  • [39] AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS
    MARQUARDT, DW
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02): : 431 - 441
  • [40] Linearly-Constrained Recursive Total Least-Squares Algorithm
    Arablouei, Reza
    Dogancay, Kutluyil
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (12) : 821 - 824