On discrete random dopant modeling in drift-diffusion simulations: physical meaning of 'atomistic' dopants

被引:91
|
作者
Sano, N [1 ]
Matsuzawa, K
Mukai, M
Nakayama, N
机构
[1] Univ Tsukuba, Inst Appl Phys, Tsukuba, Ibaraki 3057573, Japan
[2] STARC, Kohoku Ku, Yokohama, Kanagawa 2220033, Japan
关键词
D O I
10.1016/S0026-2714(01)00138-X
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the physics behind the 'atomistic' dopant model widely used in drift-diffusion (DD) simulators for the study of statistical threshold voltage variations in ultra-small MOSFETs. It is found that the conventional dopant model, when extended to the extreme atomistic regime, becomes physically inconsistent with the concepts of electric potential presumed in DD device simulations. The split of the Coulomb potential between the long-range and short-range parts associated with discretized dopants. is critical for the device simulations under the atomistic regime. A new dopant model to overcome such problems for 3-dimensional DD simulations is proposed by employing this idea. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [21] Quantum drift-diffusion modeling of spin transport in nanostructures
    Barletti, Luigi
    Mehats, Florian
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [22] Modeling left-truncated degradation data using random drift-diffusion Wiener processes
    Yan, Bingxin
    Wang, Han
    Ma, Xiaobing
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2024, 21 (02): : 200 - 223
  • [23] MODELING OF DRIFT-DIFFUSION CURRENTS AND MOBILITY DEGRADATION IN IGFETS
    GUERRIERI, R
    RUDAN, M
    ALTA FREQUENZA, 1983, 52 (04): : 290 - 296
  • [24] Simulations of Electrical Discharges in Air Using Stabilized Drift-Diffusion Model
    Singh, Shailendra
    Serdyuk, Yuriy V.
    Gubanski, Stanislaw M.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (08) : 3031 - 3039
  • [25] A coupled Schrodinger drift-diffusion model for quantum semiconductor device simulations
    Degond, P
    El Ayyadi, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) : 222 - 259
  • [26] Drift-Diffusion Modeling and Simulation of Four Terminal Ballistic Rectifier
    Garg, A.
    Jain, N.
    Singh, A. K.
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1995 - 1998
  • [27] Nonlinear diffusion, boundary layers and nonsmoothness: Analysis of challenges in drift-diffusion semiconductor simulations
    Farrell, Patricio
    Peschka, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (12) : 3731 - 3747
  • [28] Drift-diffusion modeling reveals that masked faces are preconceived as unfriendly
    Mulder, Martijn J.
    Prummer, Franziska
    Terburg, David
    Kenemans, J. Leon
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [29] Random walk on spheres method for solving anisotropic drift-diffusion problems
    Shalimova, Irina
    Sabelfeld, Karl K.
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (01): : 43 - 54
  • [30] ON THE EXISTENCE OF SOLUTIONS FOR A DRIFT-DIFFUSION SYSTEM ARISING IN CORROSION MODELING
    Chainais-Hillairet, Claire
    Lacroix-Violet, Ingrid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 77 - 92