A quantum theory of the lossless beam splitter is given in terms of the quasi mode theory of macroscopic canonical quantization used to treat problems in cavity quantum electrodynamics and quantum optics. A Heisenberg picture approach to quantum scattering theory is applied, in which the input and output operators that are related via the scattering operator are linked to quantum optical measurements described via multi-time quantum correlation functions. In the application to the beam splitter the Heisenberg equations of motion for the input operators associated with the quasi mode annihilation operators are formally solved in a rotating picture to show that the unitary transform of the incident quasi mode annihilation operator (via the scattering operator) is just a linear combination of the incident and reflected quasi mode annihilation operators, in accordance with assumptions made in previous treatments of the beam splitter. The results depend on conservation of the transverse component of the wave vector, which follows from the form of the quasi mode-quasi mode coupling constants, and on conservation of the unperturbed energy, which follows from scattering theory. The applicability of quantum scattering theory to the beam splitter is justified in the usual situation where integrated one photon and two photon detection rates are finite for incident light field states of interest.
机构:
Dukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Inst Theoret & Appl Electromagnet, 13 Izhorskaya, Moscow 125412, RussiaDukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Vinogradov, A. P.
Shishkov, V. Yu
论文数: 0引用数: 0
h-index: 0
机构:
Dukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Inst Theoret & Appl Electromagnet, 13 Izhorskaya, Moscow 125412, RussiaDukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Shishkov, V. Yu
Doronin, I., V
论文数: 0引用数: 0
h-index: 0
机构:
Dukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Inst Theoret & Appl Electromagnet, 13 Izhorskaya, Moscow 125412, RussiaDukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Doronin, I., V
Andrianov, E. S.
论文数: 0引用数: 0
h-index: 0
机构:
Dukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Inst Theoret & Appl Electromagnet, 13 Izhorskaya, Moscow 125412, RussiaDukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Andrianov, E. S.
Pukhov, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Dukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Inst Theoret & Appl Electromagnet, 13 Izhorskaya, Moscow 125412, RussiaDukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
Pukhov, A. A.
Lisyansky, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, Dept Phys, Queens Coll, Flushing, NY 11367 USA
CUNY, Grad Ctr, New York, NY 10016 USADukhov Res Inst Automat VNIIA, 22 Sushchevskaya, Moscow 127055, Russia
机构:
Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Prabhu, Kartik
论文数: 引用数:
h-index:
机构:
Satishchandran, Gautam
Wald, Robert M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Enrico Fermi Inst, 5640 South Ellis Ave, Chicago, IL 60637 USA
Univ Chicago, Dept Phys, 5640 South Ellis Ave, Chicago, IL 60637 USAUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
机构:
Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R ChinaChinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Liu, RH
Tan, WH
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Tan, WH
Xu, WC
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Xu, WC
Zhang, JF
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Zhang, JF
CHINESE SCIENCE BULLETIN,
1998,
43
(05):
: 425
-
430