COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS

被引:20
|
作者
Al-Shaniafi, Yousef [1 ]
Smith, Patrick F. [2 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
D O I
10.1216/JCA-2011-3-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. A unital H-module M is a comultiplication module provided for each submodule N of M there exists an ideal A of R such that N is the set of elements M in M such that Am = 0. It is proved that if M is a finitely generated comultiplication H-module with annihilator B in R then the ring RIB is semilocal and in certain cases M is quotient finite dimensional. Moreover, certain comultiplication modules satisfy the AB5*-condition. If an H-module X = circle plus U-i is an element of I(i) is a direct sum of simple submodules U-i (i is an element of I) and if P-i is the annihilator of U-i in R for each i in I then X is a comultiplication module if and only if boolean AND P-j not equal i(j) not subset of P-i for all i is an element of I. A Noetherian comultiplication module is Artinian and a finitely generated Artinian module M is a comultiplication module if and only if the socle of M is a (finite) direct sum of pairwise non-isomorphic simple submodules. In case R is a Dedekind domain, an H-module M is a comultiplication module if and only if M is cocyclic or M congruent to (R/P-1(k(1))) circle plus ... circle plus (R/P-n(k(n))) for some positive integers n, k(i) (1(1) <= i <= n) and distinct maximal ideals P-i (1 <= i <= n) of R. For a general ring R a Noetherian H-module M is comultiplication if and only if the R-P-module M-P is comultiplication for every maximal ideal P of R, but it is shown that this is not true in general. It is shown that comultiplication modules and quasi-injective modules are related in certain circumstances.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [41] On the Graph of Modules Over Commutative Rings II
    Ansari-Toroghy, Habibollah
    Habibi, Shokoufeh
    Hezarjaribi, Masoomeh
    FILOMAT, 2018, 32 (10) : 3657 - 3665
  • [42] ON WEAK MCCOY MODULES OVER COMMUTATIVE RINGS
    Darani, Ahmad Yousefian
    Shabani, Masoumeh
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 90 - 97
  • [43] Tests for injectivity of modules over commutative rings
    Christensen, Lars Winther
    Iyengar, Srikanth B.
    COLLECTANEA MATHEMATICA, 2017, 68 (02) : 243 - 250
  • [44] Rings of operators on modules over commutative rings and their right ideals
    Cannings, RC
    Holland, MP
    JOURNAL OF ALGEBRA, 1996, 186 (01) : 235 - 263
  • [45] Prime Submodules of Regular Modules Over Commutative Rings
    Ershad, M.
    Amiri, N.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (06): : 963 - 966
  • [46] ON THE EXTENDED TOTAL GRAPH OF MODULES OVER COMMUTATIVE RINGS
    Saraei, F. Esmaeili Khalil
    Navidinia, E.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 77 - 86
  • [47] EMBEDDINGS OF DIFFERENTIAL GROUPOIDS INTO MODULES OVER COMMUTATIVE RINGS
    Kravchenko, Aleksandr Vladimirovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 599 - 606
  • [48] A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS
    Soheilnia, F.
    Payrovi, Sh
    Behtoei, A.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2021, 29 : 211 - 222
  • [49] NOTES ON ANNIHILATOR CONDITIONS IN MODULES OVER COMMUTATIVE RINGS
    Darani, Ahmad Yousefian
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 59 - 71
  • [50] NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS
    Crivei, Septimiu
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) : 343 - 352