Reflected solutions of backward SDE's, and related obstacle problems for PDE's

被引:5
|
作者
El Karoui, N
Kapoudjian, C
Pardoux, E
Peng, S
Quenez, MC
机构
[1] Univ Paris 06, Lab Probabilities, URA CNRS 224, F-75232 Paris 05, France
[2] Univ Aix Marseille 1, Ctr Math & Informat, LATP, URA CNRS 225, F-13453 Marseille, France
[3] Ecole Normale Super Lyon, F-69364 Lyon, France
[4] Shandong Univ, Math Inst, Jinan 250100, Peoples R China
[5] Univ Paris 12, F-93166 Noisy Le Grand, France
来源
ANNALS OF PROBABILITY | 1997年 / 25卷 / 02期
关键词
backward stochastic differential equation; probabilistic representation; of solution of second order parabolic PDE; obstacle problems for second order parabolic PDE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study reflected solutions of one-dimensional backward stochastic differential equations. The "reflection" keeps the solution above a given stochastic process. We prove uniqueness and existence both by a fixed point argument and by approximation via penalization. We show that when the coefficient has a special form, then the solution of our problem is the value function of a mixed optimal stopping-optimal stochastic control problem. We finally show that, when put in a Markovian framework, the solution of our reflected BSDE provides a probabilistic formula for the unique viscosity solution of an obstacle problem for a parabolic partial differential equation.
引用
收藏
页码:702 / 737
页数:36
相关论文
共 50 条
  • [31] A variational approach to the construction and Malliavin differentiability of strong solutions of SDE’s
    Olivier Menoukeu-Pamen
    Thilo Meyer-Brandis
    Torstein Nilssen
    Frank Proske
    Tusheng Zhang
    Mathematische Annalen, 2013, 357 : 761 - 799
  • [32] A variational approach to the construction and Malliavin differentiability of strong solutions of SDE's
    Menoukeu-Pamen, Olivier
    Meyer-Brandis, Thilo
    Nilssen, Torstein
    Proske, Frank
    Zhang, Tusheng
    MATHEMATISCHE ANNALEN, 2013, 357 (02) : 761 - 799
  • [33] Regularity for solutions to a class of PDE's with Orlicz growth
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 113 - 127
  • [34] Lump Solutions for PDE’s: Algorithmic Construction and Classification
    P G Estévez
    J Prada
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 166 - 175
  • [35] On the singular PDE's geometry and boundary value problems
    Agarwal, Ravi P.
    Prastaro, Agostino
    APPLICABLE ANALYSIS, 2009, 88 (08) : 1115 - 1131
  • [36] Lump Solutions for PDE's: Algorithmic Construction and Classification
    Estevez, P. G.
    Prada, J.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 166 - 175
  • [37] Computing Solutions of Symmetric Hyperbolic Systems of PDE's
    Selivanova, Svetlana
    Selivanov, Victor
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2008, 221 : 243 - 255
  • [38] Holder regularity of solutions of PDE's: A geometrical view
    Aimar, H
    Forzani, L
    Toledano, R
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) : 1145 - 1173
  • [39] SINGULAR PDE'S GEOMETRY AND BOUNDARY VALUE PROBLEMS
    Agarwal, Ravi P.
    Prastaro, Agostino
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2008, 9 (03) : 417 - 460
  • [40] Stochastic Solutions of Nonlinear PDE's and an Extension of Superprocesses
    Mendes, Rui Vilela
    STOCHASTIC AND INFINITE DIMENSIONAL ANALYSIS, 2016, : 243 - 262