natural operator;
product preserving bundle functor;
Weil algebra;
D O I:
10.1007/s10587-005-0067-0
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We define equivariant tensors for every non-negative integer p and every Weil algebra A and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type (p, 0) on an n-dimensional ;manifold M to tensor fields of type (p, 0) on (TM)-M-A if 1 <= p <= n. Moreover, we determine explicitly the equivariant tensors for the Weil algebras D-k(T), where k and r are non-negative integers.
机构:
Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, MoscowLomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow
Guterman A.E.
Duffner M.A.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, LisboaLomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow
Duffner M.A.
Spiridonov I.A.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow Center for Continuous Mathematical Education, MoscowLomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow
机构:
Univ Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil
Sobolev Inst Math, Novosibirsk, RussiaUniv Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil
Shestakov, Ivan
Zhukavets, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
Czech Tech Univ, Fac Elect Engn, CR-16635 Prague, Czech RepublicUniv Sao Paulo, Inst Matemat & Estatist, Sao Paulo, Brazil