ALMOST-EINSTEIN HYPERSURFACES IN THE EUCLIDEAN SPACE

被引:4
|
作者
Vlachos, Theodoros [1 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
D O I
10.1215/ijm/1290435347
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that almost-Einstein hypersurfaces in the Euclidean space are homeomorphic to spheres. The proof relies on universal lower bounds in terms of the Betti numbers for the L(n/2)-norms of the Ricci and traceless Ricci tensor of compact oriented n-dimensional hypersurfaces. Certain examples show that the assumption on the codimension is essential.
引用
收藏
页码:1221 / 1235
页数:15
相关论文
共 50 条
  • [21] A Characterization of Separable Hypersurfaces in Euclidean Space
    Chen, D.
    Wang, C. X.
    Wang, X. S.
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 339 - 344
  • [22] RULED HYPERSURFACES OF EUCLIDEAN-SPACE
    ABE, K
    BLAIR, DE
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1987, 17 (04) : 697 - 708
  • [23] Minimal Translation Hypersurfaces in Euclidean Space
    Marian Ioan Munteanu
    Oscar Palmas
    Gabriel Ruiz-Hernández
    Mediterranean Journal of Mathematics, 2016, 13 : 2659 - 2676
  • [24] ON CONVEX HYPERSURFACES IN EUCLIDEAN-SPACE
    BAIKOUSSIS, C
    KOUFOGIORGOS, T
    ARCHIV DER MATHEMATIK, 1987, 49 (04) : 337 - 343
  • [25] EUCLIDEAN VECTOR FIELDS ON HYPERSURFACES IN EUCLIDEAN SPACE AND INTEGRAL FORMULAS
    AMUR, K
    HEGDE, VS
    TENSOR, 1973, 27 (01): : 109 - 117
  • [26] k-ALMOST NEWTON-EINSTEIN SOLITONS ON HYPERSURFACES IN GENERALIZED SASAKIAN SPACE FORMS
    Siddiqi, Mohd Danish
    Cunha, Antonio Wilson
    Siddiqui, Shah Alam
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (02): : 224 - 237
  • [27] Hypersurfaces in a Euclidean space with a Killing vector field
    Guediri, Mohammed
    Deshmukh, Sharief
    AIMS MATHEMATICS, 2024, 9 (01): : 1899 - 1910
  • [28] Complete flat fronts as hypersurfaces in Euclidean space
    Honda, Atsufumi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2018, 94 (03) : 25 - 30
  • [29] RICCI SOLITON BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE
    Mosadegh, N.
    Abedi, E.
    Ilmakchi, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (07) : 1084 - 1091
  • [30] A LADDER OF CURVATURES FOR HYPERSURFACES IN THE EUCLIDEAN AMBIENT SPACE
    Brzycki, Bryan
    Giesler, Matthew D.
    Gomez, Kevin
    Odom, Lucy H.
    Suceava, Bogdan D.
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (04): : 1347 - 1356