Interactive Data Exploration based on User Relevance Feedback

被引:0
|
作者
Dimitriadou, Kyriaki [1 ]
Papaemmanouil, Olga [1 ]
Diao, Yanlei [2 ]
机构
[1] Brandeis Univ, Waltham, MA 02454 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Interactive Data Exploration (IDE) applications typically involve users that aim to discover interesting objects by iteratively executing numerous ad-hoc exploration queries. Therefore, IDE can easily become an extremely labor and resource intensive process. To support these applications, we introduce a framework that assists users by automatically navigating them through the data set and allows them to identify relevant objects without formulating data retrieval queries. Our approach relies on user relevance feedback on data samples to model user interests and strategically collects more samples to refine the model while minimizing the user effort. The system leverages decision tree classifiers to generate an effective user model that balances the trade-off between identifying all relevant objects and reducing the size of final returned (relevant and irrelevant) objects. Our preliminary experimental results demonstrate that we can predict linear patterns of user interests (i.e., range queries) with high accuracy while achieving interactive performance.
引用
收藏
页码:292 / 295
页数:4
相关论文
共 50 条
  • [21] EFESTO: A Platform for the End-User Development of Interactive Workspaces for Data Exploration
    Desolda, Giuseppe
    Ardito, Carmelo
    Matera, Maristella
    RAPID MASHUP DEVELOPMENT TOOLS, 2016, 591 : 63 - 81
  • [22] An Interactive Relevance Feedback Interface for Evidence-Based Health Care
    Donoso-Guzman, Ivania
    Parra, Denis
    IUI 2018: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2018, : 103 - 114
  • [23] Interactive content-based image retrieval using relevance feedback
    MacArthur, SD
    Brodley, CE
    Kak, AC
    Broderick, LS
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2002, 88 (02) : 55 - 75
  • [24] Relevance feedback techniques in interactive content-based image retrieval
    Rui, Y
    Huang, TS
    Mehrotra, S
    STORAGE AND RETRIEVAL FOR IMAGE AND VIDEO DATABASES VI, 1997, 3312 : 25 - 36
  • [25] Interactive visual data exploration with subjective feedback: an information-theoretic approach
    Kai Puolamäki
    Emilia Oikarinen
    Bo Kang
    Jefrey Lijffijt
    Tijl De Bie
    Data Mining and Knowledge Discovery, 2020, 34 : 21 - 49
  • [26] Interactive Visual Data Exploration with Subjective Feedback: An Information-Theoretic Approach
    Puolamaki, Kai
    Oikarinen, Emilia
    Kang, Bo
    Lijffijt, Jefrey
    De Bie, Tijl
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1208 - 1211
  • [27] Interactive visual data exploration with subjective feedback: an information-theoretic approach
    Puolamaki, Kai
    Oikarinen, Emilia
    Kang, Bo
    Lijffijt, Jefrey
    De Bie, Tijl
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (01) : 21 - 49
  • [28] Comparative analysis of relevance feedback methods based on two user studies
    Akuma, Stephen
    Iqbal, Rahat
    Jayne, Chrisina
    Doctor, Faiyaz
    COMPUTERS IN HUMAN BEHAVIOR, 2016, 60 : 138 - 146
  • [29] Information embedding based on user's relevance feedback for image retrieval
    Lee, CS
    Ma, WY
    Zhang, HJ
    MULTIMEDIA STORAGE AND ARCHIVING SYSTEMS IV, 1999, 3846 : 294 - 304
  • [30] Navigational Pattern Based Relevance Feedback Using User Profile in CBIR
    Karim, Syed
    Harris, Muhammad
    Arif, Muhammad
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2016, 13 (6A) : 867 - 872