Fast robust variable selection

被引:0
|
作者
Van Aelst, Stefan [1 ]
Khan, Jafar A. [2 ]
Zamar, Ruben H. [3 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[2] Univ Dhaka, Dept Stat, Dhaka, Bangladesh
[3] Univ British Columbia, Dept Stat, Vancouver, BC V5Z 1M9, Canada
关键词
correlation; missing data; robustness; variable selection;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
We discuss some computationally efficient procedures for robust variable selection in linear regression. A key component in these procedures is the computation of robust correlations between pairs of variables. We show that the robust variable selection procedures can easily handle missing data under the assumption that data are missing completely at random.
引用
收藏
页码:359 / +
页数:3
相关论文
共 50 条
  • [41] Uncertainty quantification for robust variable selection and multiple testing
    Belitser, Eduard
    Nurushev, Nurzhan
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5955 - 5979
  • [42] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen LI
    Yun-qi ZHANG
    Nian-sheng TANG
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 332 - 346
  • [43] Bayesian robust transformation and variable selection: a unified approach
    Gottardo, Raphael
    Raftery, Adrian
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (03): : 361 - 380
  • [44] Variable selection in robust semiparametric modeling for longitudinal data
    Kangning Wang
    Lu Lin
    [J]. Journal of the Korean Statistical Society, 2014, 43 : 303 - 314
  • [45] Robust variable selection with application to quality of life research
    Andreas Alfons
    Wolfgang E. Baaske
    Peter Filzmoser
    Wolfgang Mader
    Roland Wieser
    [J]. Statistical Methods & Applications, 2011, 20 : 65 - 82
  • [46] Robust variable selection for finite mixture regression models
    Tang, Qingguo
    Karunamuni, R. J.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (03) : 489 - 521
  • [47] A FAST PROCEDURE OF VARIABLE SELECTION IN LINEAR REGRESSION MODEL
    安柏庆
    [J]. Journal of Systems Science & Complexity, 1989, (03) : 266 - 274
  • [48] Fast FSR Variable Selection with Applications to Clinical Trials
    Boos, Dennis D.
    Stefanski, Leonard A.
    Wu, Yujun
    [J]. BIOMETRICS, 2009, 65 (03) : 692 - 700
  • [49] Interval ridge regression (iRR) as a fast and robust method for quantitative prediction and variable selection applied to edible oil adulteration
    Jovic, Ozren
    Smrecki, Neven
    Popovic, Zora
    [J]. TALANTA, 2016, 150 : 37 - 45
  • [50] Fast and robust GSC beamformer based on variable diagonal loading
    Bao, Zhiqiang
    Wu, Shunjun
    Zhang, Linrang
    [J]. PROCEEDINGS OF 2006 CIE INTERNATIONAL CONFERENCE ON RADAR, VOLS 1 AND 2, 2006, : 934 - +