Global Wellposedness for a Certain Class of Large Initial Data for the 3D Navier-Stokes Equations

被引:2
|
作者
Wong, Percy [1 ]
机构
[1] Program Appl & Computat Math, Princeton, NJ 08540 USA
来源
ANNALES HENRI POINCARE | 2014年 / 15卷 / 04期
关键词
POSEDNESS;
D O I
10.1007/s00023-013-0255-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we consider a special class of initial data to the 3D Navier-Stokes equations on the torus, in which there is a certain degree of orthogonality in the components of the initial data. We showed that, under such conditions, the Navier-Stokes equations are globally wellposed. We also showed that there exists large initial data, in the sense of the critical norm that satisfies the conditions that we considered.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 50 条
  • [1] Global Wellposedness for a Certain Class of Large Initial Data for the 3D Navier–Stokes Equations
    Percy Wong
    Annales Henri Poincaré, 2014, 15 : 633 - 643
  • [2] On the global wellposedness of the 3-D Navier-Stokes equations with large initial data
    Chemin, Jean-Yves
    Gallagher, Isabelle
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (04): : 679 - 698
  • [3] Global Wellposedness for the 3D Inhomogeneous Incompressible Navier-Stokes Equations
    Craig, Walter
    Huang, Xiangdi
    Wang, Yun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (04) : 747 - 758
  • [4] Global Regularity to the Navier-Stokes Equations for a Class of Large Initial Data
    Han, Bin
    Chen, Yukang
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (02) : 262 - 286
  • [5] Global solutions to the 3D compressible Navier-Stokes equations with a class of special initial data
    Yu, Yanghai
    Wang, Hui
    Li, Jinlu
    Yang, Xiaolei
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
  • [6] Global solutions to 3D incompressible Navier-Stokes equations with some large initial data
    Yu, Yanghai
    Li, Jinlu
    Yin, Zhaoyang
    APPLIED MATHEMATICS LETTERS, 2022, 129
  • [7] Global wellposedness of the 3D compressible Navier-Stokes equations with free surface in the maximal regularity class
    Shibata, Yoshihiro
    Zhang, Xin
    NONLINEARITY, 2023, 36 (07) : 3710 - 3733
  • [8] On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations
    Jean-Yves Chemin
    Ping Zhang
    Communications in Mathematical Physics, 2007, 272 : 529 - 566
  • [9] GLOBAL SOLUTIONS TO THE ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL DATA
    Fang, Daoyuan
    Zhang, Ting
    Zi, Ruizhao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 4983 - 5026
  • [10] Global Wellposedness for the 3D Inhomogeneous Incompressible Navier–Stokes Equations
    Walter Craig
    Xiangdi Huang
    Yun Wang
    Journal of Mathematical Fluid Mechanics, 2013, 15 : 747 - 758