On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations

被引:0
|
作者
Jean-Yves Chemin
Ping Zhang
机构
[1] Université Pierre et Marie Curie,Laboratoire J.
[2] Academy of Mathematics & Systems Science,L. Lions, Case 187
来源
关键词
Initial Data; Horizontal Variable; Vertical Derivative; Horizontal Derivative; Small Initial Data;
D O I
暂无
中图分类号
学科分类号
摘要
Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations (NSν) with initial data in the scaling invariant Besov space, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}^{-1+\frac3p}_{p,\infty},$$\end{document} here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations (ANSν), where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}^{-\frac12,\frac12}_4$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}^{-\frac12,\frac12}_4(T).$$\end{document} Then with initial data in the scaling invariant space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{B}^{-\frac12,\frac12}_4,$$\end{document} we prove the global wellposedness for (ANSν) provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of (ANSν) with high oscillatory initial data (1.2).
引用
收藏
页码:529 / 566
页数:37
相关论文
共 50 条