Adversarial attacks on medical machine learning

被引:477
|
作者
Finlayson, Samuel G. [1 ]
Bowers, John D. [2 ]
Ito, Joichi [3 ]
Zittrain, Jonathan L. [2 ]
Beam, Andrew L. [4 ]
Kohane, Isaac S. [1 ]
机构
[1] Harvard Med Sch, Boston, MA 02115 USA
[2] Harvard Law Sch, Cambridge, MA 02138 USA
[3] MIT, Media Lab, Cambridge, MA 02139 USA
[4] Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA
关键词
D O I
10.1126/science.aaw4399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
[No abstract available]
引用
收藏
页码:1287 / 1289
页数:3
相关论文
共 50 条
  • [31] Adversarial Machine Learning Attacks on Multiclass Classification of IoT Network Traffic
    Pantelakis, Vasileios
    Bountakas, Panagiotis
    Farao, Aristeidis
    Xenakis, Christos
    [J]. 18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [32] Stealing Machine Learning Models: Attacks and Countermeasures for Generative Adversarial Networks
    Hu, Hailong
    Pang, Jun
    [J]. 37TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2021, 2021, : 1 - 16
  • [33] Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain
    Rosenberg, Ishai
    Shabtai, Asaf
    Elovici, Yuval
    Rokach, Lior
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (05)
  • [34] Adversarial attacks on machine learning cybersecurity defences in Industrial Control Systems
    Anthi, Eirini
    Williams, Lowri
    Rhode, Matilda
    Burnap, Pete
    Wedgbury, Adam
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 58
  • [35] Practical Attacks on Machine Learning: A Case Study on Adversarial Windows Malware
    Demetrio, Luca
    Biggio, Battista
    Roli, Fabio
    [J]. IEEE SECURITY & PRIVACY, 2022, 20 (05) : 77 - 85
  • [36] A Network Security Classifier Defense: Against Adversarial Machine Learning Attacks
    De Lucia, Michael J.
    Cotton, Chase
    [J]. PROCEEDINGS OF THE 2ND ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNING, WISEML 2020, 2020, : 67 - 73
  • [37] A Systematic Review of Adversarial Machine Learning Attacks, Defensive Controls, and Technologies
    Malik, Jasmita
    Muthalagu, Raja
    Pawar, Pranav M.
    [J]. IEEE ACCESS, 2024, 12 : 99382 - 99421
  • [38] Adversarial Attacks to Machine Learning-Based Smart Healthcare Systems
    Newaz, A. K. M. Iqtidar
    Haque, Nur Imtiazul
    Sikder, Amit Kumar
    Rahman, Mohammad Ashiqur
    Uluagac, A. Selcuk
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [39] Adversarial Training Against Adversarial Attacks for Machine Learning-Based Intrusion Detection Systems
    Haroon, Muhammad Shahzad
    Ali, Husnain Mansoor
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3513 - 3527
  • [40] Investigation of Deep Learning architectures and features for Adversarial Machine Learning Attacks in Modulation Classifications
    Aristodemou, Marios
    Lambotharan, Sangarapillai
    Zheng, Gan
    Aristodemou, Leonidas
    [J]. 2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,