Multimodal Multitask Neural Network for Motor Imagery Classification With EEG and fNIRS Signals

被引:25
|
作者
He, Qun [1 ,2 ]
Feng, Lufeng [1 ,2 ]
Jiang, Guoqian [1 ,2 ]
Xie, Ping [1 ,2 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Hebei Key Lab Intelligent Rehabil & Neuroregulat, Qinhuangdao 066004, Hebei, Peoples R China
关键词
Electroencephalography; Functional near-infrared spectroscopy; Feature extraction; Multitasking; Task analysis; Brain modeling; Spatial resolution; Brain-computer interface (BCI); motor imagery (MI); multimodal; multitask learning (MTL); BRAIN-COMPUTER-INTERFACE; SYSTEM; TIME;
D O I
10.1109/JSEN.2022.3205956
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain-computer interface (BCI) based on motor imagery (MI) can control external applications by decoding different brain physiological signals, such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Traditional unimodal-based MI decoding methods cannot obtain satisfactory classification performance due to the limited representation ability in EEG or fNIRS signals. Usually, different brain signals have complementarity with different sensitivity to different MI patterns. To improve the recognition rate and generalization ability of MI, we propose a novel end-to-end multimodal multitask neural network (M2NN) model with the fusion of EEG and fNIRS signals. M2NN method integrates the spatial-temporal feature extraction module, multimodal feature fusion module, and multitask learning (MTL) module. Specifically, the MTL module includes two learning tasks, namely one main classification task for MI and one auxiliary task with deep metric learning. This approach was evaluated using a public multimodal dataset, and experimental results show that M2NN achieved the classification accuracy improvement of 8.92%, 6.97%, and 8.62% higher than multitask unimodal EEG signal model (MEEG), multitask unimodal HbR signal model (MHbR), and multimodal single-task (MDNN), respectively. Classification accuracies of multitasking methods of MEEG, MHbR, and M2NN are improved by 4.8%, 4.37%, and 8.62% compared with single-task methods EEG, HbR, and MDNN, respectively. The M2NN method achieved the best classification performance of the six methods, with the average accuracy of 29 subjects being 82.11% +/- 7.25%. The effectiveness of multimodal fusion and MTL was verified. The M2NN method is superior to baseline and state-of-the-art (SOTA) methods.
引用
收藏
页码:20695 / 20706
页数:12
相关论文
共 50 条
  • [21] Merged CNNs for the classification of EEG motor imagery signals
    Echtioui A.
    Zouch W.
    Ghorbel M.
    Multimedia Tools and Applications, 2025, 84 (1) : 373 - 395
  • [22] Simultaneous classification of motor imagery and SSVEP EEG signals
    Dehzangi, Omid
    Zou, Yuan
    Jafari, Roozbeh
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 1303 - 1306
  • [23] Classification of Motor Imagery EEG Signals with CSP Filtering Through Neural Networks Models
    Virgilio Gonzalez, Carlos Daniel
    Sossa Azuela, Juan Humberto
    Espino, Elsa Rubio
    Ponce Ponce, Victor H.
    ADVANCES IN SOFT COMPUTING, MICAI 2018, PT I, 2018, 11288 : 123 - 135
  • [24] Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
    Xie, Yu
    Oniga, Stefan
    SENSORS, 2023, 23 (04)
  • [25] Deep recurrent-convolutional neural network for classification of simultaneous EEG-fNIRS signals
    Ghonchi, Hamidreza
    Fateh, Mansoor
    Abolghasemi, Vahid
    Ferdowsi, Saideh
    Rezvani, Mohsen
    IET SIGNAL PROCESSING, 2020, 14 (03) : 142 - 153
  • [26] Application of Convolutional Neural Network for Classification of Consumer Preference from Hybrid EEG and FNIRS Signals
    Ramirez, Maria
    Kaheh, Shima
    Khalil, Mohammad Affan
    George, Kiran
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 1024 - 1028
  • [27] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [28] SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification
    Liu, Ke
    Yang, Mingzhao
    Xing, Xin
    Yu, Zhuliang
    Wu, Wei
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (05)
  • [29] Comparison of Motor Imagery EEG Classification using Feedforward and Convolutional Neural Network
    Majoros, Tamas
    Oniga, Stefan
    IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 25 - 29
  • [30] A Multimodal fNIRS and EEG-Based BCI Study on Motor Imagery and Passive Movement
    Yu, Juanhong
    Ang, Kai Keng
    Guan, Cuntai
    Wang, Chuanchu
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 5 - 8