THE ENSEMBLE KALMAN FILTER FOR MULTIDIMENSIONAL BIOECONOMIC MODELS

被引:9
|
作者
Kvamsdal, Sturla F. [1 ]
Sandal, Leif K. [2 ]
机构
[1] SNF Ctr Appl Res NHH, N-5045 Bergen, Norway
[2] NHH Norwegian Sch Econ, N-5045 Bergen, Norway
关键词
Barents Sea; bioeconomics; ecosystem-based management; ensemble Kalman filter; multidimensional models; state space model; PARAMETER-ESTIMATION; STOCK; UNCERTAINTY; MANAGEMENT; CAPELIN; INDEX;
D O I
10.1111/nrm.12070
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To integrate economic considerations into management decisions in ecosystem frameworks, we need to build models that capture observed system dynamics and incorporate existing knowledge of ecosystems, while at the same time accommodating economic analysis. The main constraint for models to serve in economic analysis is dimensionality. In addition, to apply in long-term management analysis, models should be stable in terms of adjustments to new observations. We use the ensemble Kalman filter to fit relatively simple models to ecosystem or foodweb data and estimate parameters that are stable over the observed variability in the data. The filter also provides a lower bound on the noise terms that a stochastic analysis requires. In this paper, we apply the filter to model the main interactions in the Barents Sea ecosystem. In a comparison, our method outperforms a regression-based approach.
引用
收藏
页码:321 / 347
页数:27
相关论文
共 50 条
  • [1] Parametric spatial covariance models in the ensemble Kalman filter
    Skauvold, Jacob
    Eidsvik, Jo
    [J]. SPATIAL STATISTICS, 2019, 29 : 226 - 242
  • [2] Ensemble Kalman filter
    School of Electrical Engineering and Computer Science, University of Oklahoma, Norman, OK, United States
    不详
    [J]. IEEE Control Syst Mag, 2009, 3 (34-46):
  • [3] Improving Forecast Skill of Lowland Hydrological Models Using Ensemble Kalman Filter and Unscented Kalman Filter
    Sun, Y.
    Bao, W.
    Valk, K.
    Brauer, C. C.
    Sumihar, J.
    Weerts, A. H.
    [J]. WATER RESOURCES RESEARCH, 2020, 56 (08)
  • [4] Ensemble Kalman filter for vortex models of disturbed aerodynamic flows
    Le Provost, Mathieu
    Eldredge, Jeff D.
    [J]. PHYSICAL REVIEW FLUIDS, 2021, 6 (05)
  • [5] The ensemble Kalman filter for continuous updating of reservoir simulation models
    Gu, YQ
    Oliver, DS
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 79 - 87
  • [6] Updating Markov chain models using the ensemble Kalman filter
    Dean S. Oliver
    Yan Chen
    Geir Nævdal
    [J]. Computational Geosciences, 2011, 15 : 325 - 344
  • [7] Updating Markov chain models using the ensemble Kalman filter
    Oliver, Dean S.
    Chen, Yan
    Naevdal, Geir
    [J]. COMPUTATIONAL GEOSCIENCES, 2011, 15 (02) : 325 - 344
  • [8] Understanding the Ensemble Kalman Filter
    Katzfuss, Matthias
    Stroud, Jonathan R.
    Wikle, Christopher K.
    [J]. AMERICAN STATISTICIAN, 2016, 70 (04): : 350 - 357
  • [9] Resampling the ensemble Kalman filter
    Myrseth, Inge
    Saetrom, Jon
    Omre, Henning
    [J]. COMPUTERS & GEOSCIENCES, 2013, 55 : 44 - 53
  • [10] A mollified ensemble Kalman filter
    Bergemann, Kay
    Reich, Sebastian
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) : 1636 - 1643