Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

被引:39
|
作者
Mani, Subramani [1 ]
Chen, Yukun [2 ]
Li, Xia [3 ]
Arlinghaus, Lori [3 ]
Chakravarthy, A. Bapsi [4 ,5 ]
Abramson, Vandana [5 ,6 ]
Bhave, Sandeep R. [7 ]
Levy, Mia A. [2 ,5 ,6 ]
Xu, Hua [2 ,8 ]
Yankeelov, Thomas E. [3 ,5 ,9 ,10 ,11 ,12 ]
机构
[1] Univ New Mexico, Div Translat Informat, Dept Med, Albuquerque, NM 87131 USA
[2] Vanderbilt Univ, Dept Biomed Informat, Nashville, TN USA
[3] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN USA
[4] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN USA
[5] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN USA
[6] Vanderbilt Univ, Dept Med, Nashville, TN USA
[7] Washington Univ, Dept Med, Sch Med St Louis, St Louis, MO USA
[8] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX USA
[9] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN USA
[10] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[11] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA
[12] Vanderbilt Univ, Dept Canc Biol, Nashville, TN USA
基金
美国国家卫生研究院;
关键词
TRANSCYTOLEMMAL WATER EXCHANGE; MARKOV BLANKET INDUCTION; FEATURE-SELECTION; CAUSAL DISCOVERY; LOCAL CAUSAL; CLASSIFICATION;
D O I
10.1136/amiajnl-2012-001332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective To employ machine learning methods to predict the eventual therapeutic response of breast cancer patients after a single cycle of neoadjuvant chemotherapy (NAC). Materials and methods Quantitative dynamic contrast-enhanced MRI and diffusion-weighted MRI data were acquired on 28 patients before and after one cycle of NAC. A total of 118 semiquantitative and quantitative parameters were derived from these data and combined with 11 clinical variables. We used Bayesian logistic regression in combination with feature selection using a machine learning framework for predictive model building. Results The best predictive models using feature selection obtained an area under the curve of 0.86 and an accuracy of 0.86, with a sensitivity of 0.88 and a specificity of 0.82. Discussion With the numerous options for NAC available, development of a method to predict response early in the course of therapy is needed. Unfortunately, by the time most patients are found not to be responding, their disease may no longer be surgically resectable, and this situation could be avoided by the development of techniques to assess response earlier in the treatment regimen. The method outlined here is one possible solution to this important clinical problem. Conclusions Predictive modeling approaches based on machine learning using readily available clinical and quantitative MRI data show promise in distinguishing breast cancer responders from non-responders after the first cycle of NAC.
引用
收藏
页码:688 / 695
页数:8
相关论文
共 50 条
  • [1] A Machine Learning Model for Predicting a Major Response to Neoadjuvant Chemotherapy in Advanced Gastric Cancer
    Chen, Yonghe
    Wei, Kaikai
    Liu, Dan
    Xiang, Jun
    Wang, Gang
    Meng, Xiaochun
    Peng, Junsheng
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [2] Metabolomics by NMR Combined with Machine Learning to Predict Neoadjuvant Chemotherapy Response for Breast Cancer
    Cardoso, Marcella R.
    Silva, Alex Ap Rosini
    Talarico, Maria Cecilia R.
    Sanches, Pedro H. Godoy
    Sforca, Mauricio L.
    Rocco, Silvana A.
    Rezende, Luciana M.
    Quintero, Melissa
    Costa, Tassia B. B. C.
    Viana, Lais R.
    Canevarolo, Rafael R.
    Ferracini, Amanda C.
    Ramalho, Susana
    Gutierrez, Junier Marrero
    Guimaraes, Fernando
    Tasic, Ljubica
    Tata, Alessandra
    Sarian, Luis O.
    Cheng, Leo L.
    Porcari, Andreia M.
    Derchain, Sophie F. M.
    [J]. CANCERS, 2022, 14 (20)
  • [3] Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer
    Wei, Siwei
    Liu, Lingyan
    Zhang, Jian
    Bowers, Jeremiah
    Gowda, G. A. Nagana
    Seeger, Harald
    Fehm, Tanja
    Neubauer, Hans J.
    Vogel, Ulrich
    Clare, Susan E.
    Raftery, Daniel
    [J]. MOLECULAR ONCOLOGY, 2013, 7 (03) : 297 - 307
  • [4] Radiomics for predicting response to neoadjuvant chemotherapy treatment in breast cancer
    Rabinovici-Cohen, Simona
    Tlusty, Tal
    Abutbul, Ami
    Antila, Kari
    Fernandez, Xose
    Rejo, Beatriz Grandal
    Hexter, Efrat
    Cubelos, Oliver Hijano
    Khateeb, Abed
    Pajula, Juha
    Perek, Shaked
    [J]. MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [5] Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
    du Terrail, Jean Ogier
    Leopold, Armand
    Joly, Clement
    Beguier, Constance
    Andreux, Mathieu
    Maussion, Charles
    Schmauch, Benoit
    Tramel, Eric W.
    Bendjebbar, Etienne
    Zaslavskiy, Mikhail
    Wainrib, Gilles
    Milder, Maud
    Gervasoni, Julie
    Guerin, Julien
    Durand, Thierry
    Livartowski, Alain
    Moutet, Kelvin
    Gautier, Clement
    Djafar, Inal
    Moisson, Anne-Laure
    Marini, Camille
    Galtier, Mathieu
    Balazard, Felix
    Dubois, Remy
    Moreira, Jeverson
    Simon, Antoine
    Drubay, Damien
    Lacroix-Triki, Magali
    Franchet, Camille
    Bataillon, Guillaume
    Heudel, Pierre-Etienne
    [J]. NATURE MEDICINE, 2023, 29 (1) : 135 - 146
  • [6] Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
    Jean Ogier du Terrail
    Armand Leopold
    Clément Joly
    Constance Béguier
    Mathieu Andreux
    Charles Maussion
    Benoît Schmauch
    Eric W. Tramel
    Etienne Bendjebbar
    Mikhail Zaslavskiy
    Gilles Wainrib
    Maud Milder
    Julie Gervasoni
    Julien Guerin
    Thierry Durand
    Alain Livartowski
    Kelvin Moutet
    Clément Gautier
    Inal Djafar
    Anne-Laure Moisson
    Camille Marini
    Mathieu Galtier
    Félix Balazard
    Rémy Dubois
    Jeverson Moreira
    Antoine Simon
    Damien Drubay
    Magali Lacroix-Triki
    Camille Franchet
    Guillaume Bataillon
    Pierre-Etienne Heudel
    [J]. Nature Medicine, 2023, 29 : 135 - 146
  • [7] Predicting Neoadjuvant Treatment Response in Triple-Negative Breast Cancer Using Machine Learning
    Bhattarai, Shristi
    Saini, Geetanjali
    Li, Hongxiao
    Seth, Gaurav
    Fisher, Timothy B.
    Janssen, Emiel A. M.
    Kiraz, Umay
    Kong, Jun
    Aneja, Ritu
    [J]. DIAGNOSTICS, 2024, 14 (01)
  • [8] Predicting response to neoadjuvant chemotherapy in an Irish population of patients with breast cancer
    Francis, E.
    Lowery, A. J.
    Walsh, S.
    Crown, J.
    Prichard, R. S.
    Evoy, D.
    McDermott, E. W.
    [J]. IRISH JOURNAL OF MEDICAL SCIENCE, 2013, 182 : S34 - S34
  • [9] Biomarkers Predicting Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
    Li, Xiaoxian
    Krishnamurti, Uma
    Bhattarai, Shristi
    Klimov, Sergey
    Reid, Michelle
    Aneja, Ritu
    [J]. MODERN PATHOLOGY, 2016, 29 : 54A - 54A
  • [10] Development of a multiparametric model for predicting the response to neoadjuvant chemotherapy in breast cancer
    Qian, Fusheng
    Mao, Yajing
    Dong, Jie
    Xie, Feiyue
    Fang, Xin
    Zhang, Qian
    Xia, Panpan
    Han, Xinghua
    Lu, Nannan
    [J]. TRANSLATIONAL CANCER RESEARCH, 2024, 13 (02) : 558 - 568