Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer

被引:0
|
作者
Jean Ogier du Terrail
Armand Leopold
Clément Joly
Constance Béguier
Mathieu Andreux
Charles Maussion
Benoît Schmauch
Eric W. Tramel
Etienne Bendjebbar
Mikhail Zaslavskiy
Gilles Wainrib
Maud Milder
Julie Gervasoni
Julien Guerin
Thierry Durand
Alain Livartowski
Kelvin Moutet
Clément Gautier
Inal Djafar
Anne-Laure Moisson
Camille Marini
Mathieu Galtier
Félix Balazard
Rémy Dubois
Jeverson Moreira
Antoine Simon
Damien Drubay
Magali Lacroix-Triki
Camille Franchet
Guillaume Bataillon
Pierre-Etienne Heudel
机构
[1] Owkin,
[2] Inc.,undefined
[3] Institut Curie,undefined
[4] Centre Léon Bérard,undefined
[5] Institut Gustave Roussy,undefined
[6] Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole,undefined
来源
Nature Medicine | 2023年 / 29卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic potential and poor prognosis, and has limited treatment options. The current standard of care in nonmetastatic settings is neoadjuvant chemotherapy (NACT), but treatment efficacy varies substantially across patients. This heterogeneity is still poorly understood, partly due to the paucity of curated TNBC data. Here we investigate the use of machine learning (ML) leveraging whole-slide images and clinical information to predict, at diagnosis, the histological response to NACT for early TNBC women patients. To overcome the biases of small-scale studies while respecting data privacy, we conducted a multicentric TNBC study using federated learning, in which patient data remain secured behind hospitals’ firewalls. We show that local ML models relying on whole-slide images can predict response to NACT but that collaborative training of ML models further improves performance, on par with the best current approaches in which ML models are trained using time-consuming expert annotations. Our ML model is interpretable and is sensitive to specific histological patterns. This proof of concept study, in which federated learning is applied to real-world datasets, paves the way for future biomarker discovery using unprecedentedly large datasets.
引用
收藏
页码:135 / 146
页数:11
相关论文
共 50 条
  • [1] Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
    du Terrail, Jean Ogier
    Leopold, Armand
    Joly, Clement
    Beguier, Constance
    Andreux, Mathieu
    Maussion, Charles
    Schmauch, Benoit
    Tramel, Eric W.
    Bendjebbar, Etienne
    Zaslavskiy, Mikhail
    Wainrib, Gilles
    Milder, Maud
    Gervasoni, Julie
    Guerin, Julien
    Durand, Thierry
    Livartowski, Alain
    Moutet, Kelvin
    Gautier, Clement
    Djafar, Inal
    Moisson, Anne-Laure
    Marini, Camille
    Galtier, Mathieu
    Balazard, Felix
    Dubois, Remy
    Moreira, Jeverson
    Simon, Antoine
    Drubay, Damien
    Lacroix-Triki, Magali
    Franchet, Camille
    Bataillon, Guillaume
    Heudel, Pierre-Etienne
    [J]. NATURE MEDICINE, 2023, 29 (1) : 135 - 146
  • [2] Collaborative federated learning behind hospitals' firewalls for predicting histological complete response to neoadjuvant chemotherapy in triple-negative breast cancer.
    Du Terrail, Jean Ogier
    Leopold, Armand
    Joly, Clement
    Andreux, Mathieu
    Maussion, Charles
    Schmauch, Benoit
    Zaslavskiy, Mikhail
    Wainrib, Gilles
    Milder, Maud
    Gervasoni, Julie
    Guerin, Julien
    Durand, Thierry
    Livartowski, Alain
    Moutet, Kelvin
    Gautier, Clement
    Moisson, Anne-Laure
    Marini, Camille
    Galtier, Mathieu
    Heudel, Pierre Etienne
    Bataillon, Guillaume
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [3] Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
    Jung, Yoon Yang
    Hyun, Chang Lim
    Jin, Min-Sun
    Park, In Ae
    Chung, Yul Ri
    Shim, Bobae
    Lee, Kyu Ho
    Ryu, Han Suk
    [J]. JOURNAL OF BREAST CANCER, 2016, 19 (03) : 261 - 267
  • [4] Predicting Neoadjuvant Treatment Response in Triple-Negative Breast Cancer Using Machine Learning
    Bhattarai, Shristi
    Saini, Geetanjali
    Li, Hongxiao
    Seth, Gaurav
    Fisher, Timothy B.
    Janssen, Emiel A. M.
    Kiraz, Umay
    Kong, Jun
    Aneja, Ritu
    [J]. DIAGNOSTICS, 2024, 14 (01)
  • [5] A preliminary study on predicting pathological complete response to neoadjuvant chemotherapy in triple-negative breast cancer
    Chen, Xi
    Zhou, Zhiguo
    [J]. CANCER RESEARCH, 2024, 84 (03)
  • [6] Comment on "Histomorphological Factors Predicting the Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer" Reply
    Ryu, Han Suk
    [J]. JOURNAL OF BREAST CANCER, 2017, 20 (01) : 114 - 115
  • [7] Poor histological subtype and response to neoadjuvant treatment in triple-negative breast cancer
    Altundag, Kadri
    [J]. JOURNAL OF BUON, 2020, 25 (03): : 1665 - 1665
  • [8] Notch-based gene signature for predicting the response to neoadjuvant chemotherapy in triple-negative breast cancer
    Mohamed Omar
    Pier Vitale Nuzzo
    Francesco Ravera
    Sara Bleve
    Giuseppe Nicolò Fanelli
    Claudio Zanettini
    Itzel Valencia
    Luigi Marchionni
    [J]. Journal of Translational Medicine, 21
  • [9] Notch-based gene signature for predicting the response to neoadjuvant chemotherapy in triple-negative breast cancer
    Omar, Mohamed
    Nuzzo, Pier Vitale
    Ravera, Francesco
    Bleve, Sara
    Fanelli, Giuseppe Nicolo
    Zanettini, Claudio
    Valencia, Itzel
    Marchionni, Luigi
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [10] The response to neoadjuvant chemotherapy and prognosis of triple-negative breast cancer patients.
    Nakano, E.
    Hojo, T.
    Masumura, K.
    Kikuyama, M.
    Akashi, S.
    Kinoshita, T.
    [J]. CANCER RESEARCH, 2009, 69 (02) : 337S - 337S