Regularizing Direct Parametric Reconstruction for Dynamic PET with the Method of Sieves

被引:0
|
作者
Szirmay-Kalos, Laszlo [1 ]
Kacso, Agota [1 ]
机构
[1] Budapest Univ Technol & Econ, Budapest, Hungary
关键词
IMAGE-RECONSTRUCTION; ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes regularization methods for direct parametric dynamic PET reconstruction, when the space-time activity function needs to be recovered from measurements. In case of high spatial and temporal resolution, the reconstruction is statistically poorly defined, requiring the inclusion of a priori information in the form of a penalty term or filtering. The method of sieves executes filtering in each iteration step, i.e. projects the actual estimate into the subspace of acceptable solutions, and has been successful in reconstructing static data. The objective of this paper is to generalize the filtering scheme for spatio-temporal reconstruction, taking into account that accurate kinetic models describing the temporal behavior are non-linear. Fast changes are impossible to distinguish from noise if only a small temporal window is examined, thus the simple extension to 4D does not provide acceptable results. We show that efficient filtering can be obtained if voxel based model parameters are modified according to the time activity functions of neighboring voxels belonging to the same anatomic region. As the dependence of the time activity function on the model parameters is non-linear for sophisticated kinetic models, the filtering step involves a non-linear parameter fitting, which can be solved analytically for the two-tissue compartment model. The presented method is built into the TeraTomo (TM) system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Generalized Algorithms for Direct Reconstruction of Parametric Images From Dynamic PET Data
    Wang, Guobao
    Qi, Jinyi
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (11) : 1717 - 1726
  • [2] Sparsity Constrained Direct Parametric Reconstruction in Dynamic PET Myocardial Perfusion Imaging
    Yang, Bao
    Tang, Jing
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [3] Direct Parametric Reconstruction for Improved Characterization of Neurotransmitter Release using Dynamic PET
    Petibon, Yoann
    Alpert, Nathaniel
    Ouyang, Jinsong
    Cheung, Joey
    Kang, Min Su
    Hooker, Jacob
    Pizzagalli, Diego
    Cusin, Cristina
    Fava, Maurizio
    El Fakhri, Georges
    Normandin, Marc
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [4] Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies
    Petibon, Yoann
    Rakvongthai, Yothin
    El Fakhri, Georges
    Ouyang, Jinsong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (09): : 3539 - 3565
  • [5] DIRECT RECONSTRUCTION OF DYNAMIC PET PARAMETRIC IMAGES USING SPARSE SPECTRAL REPRESENTATION
    Wang, Guobao
    Qi, Jinyi
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 867 - 870
  • [6] Direct 4D parametric image reconstruction for dynamic cardiac PET imaging
    Tang, Jing
    Bengel, Frank
    Zhou, Yun
    Bravo, Paco
    Rahmim, Arman
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [7] Direct Bayesian parametric image reconstruction from dynamic myocardial perfusion PET data
    Li, Yang
    He, Yuru
    Rahmim, Arman
    Lu, Lijun
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [8] Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data
    Jiao, Jieqing
    Bousse, Alexandre
    Thielemans, Kris
    Burgos, Ninon
    Weston, Philip S. J.
    Schott, Jonathan M.
    Atkinson, David
    Arridge, Simon R.
    Hutton, Brian F.
    Markiewicz, Pawel
    Ourselin, Sebastien
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (01) : 203 - 213
  • [9] Dynamic PET Image Reconstruction for Parametric Imaging Using the HYPR Kernel Method
    Spencer, Benjamin
    Qi, Jinyi
    Badawi, Ramsey D.
    Wang, Guobao
    [J]. MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [10] PET imaging of neurotransmission using direct parametric reconstruction
    Petibon, Yoann
    Alpert, Nathaniel M.
    Ouyang, Jinsong
    Pizzagalli, Diego A.
    Cusin, Cristina
    Fava, Maurizio
    El Fakhri, Georges
    Normandin, Marc D.
    [J]. NEUROIMAGE, 2020, 221