Efficient Monte Carlo simulation methods in statistical physics

被引:0
|
作者
Wang, JS [1 ]
机构
[1] Natl Univ Singapore, Dept Computat Sci, Singapore 119250, Singapore
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The basic problem in equilibrium statistical mechanics is to compute phase space average, in which Monte Carlo method plays a very important role. We begin with a review of nonlocal algorithms for Markov chain Monte Carlo simulation in statistical physics. We discuss their advantages, applications, and some challenge problems which are still awaiting for better solutions. We discuss some of the recent development in simulation where reweighting is used, such as histogram methods and multicanonical method. We then discuss the transition matrix Monte Carlo method and associated algorithms. The transition matrix Monte Carlo method offers an efficient way to compute the density of states. Thus entropy and free energy, as well as the usual thermodynamic averages, are obtained as functions of model parameter (e,g. temperature) in a single run. New sampling algorithms, such as the flat histogram algorithm and equal-hit algorithm, offer sampling techniques which generate uniform probability distribution for some chosen macroscopic variable.
引用
收藏
页码:141 / 157
页数:17
相关论文
共 50 条
  • [21] Efficient Monte Carlo methods for proteins
    Wedemeyer, WJ
    Scheraga, HA
    [J]. BIOPHYSICAL JOURNAL, 2000, 78 (01) : 333A - 333A
  • [22] MONTE-CARLO SIMULATION OF STATISTICAL POWER
    BORENSTEIN, M
    KANE, J
    BUCHBINDER, J
    [J]. PSYCHOPHARMACOLOGY BULLETIN, 1987, 23 (02) : 300 - 302
  • [23] Quantum Monte Carlo methods in statistical mechanics
    Melik-Alaverdian, V
    Nightingale, MP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08): : 1409 - 1418
  • [24] METHODS OF STATISTICAL TESTING - MONTE CARLO METHOD
    MULLER, ME
    [J]. TECHNOMETRICS, 1965, 7 (04) : 659 - &
  • [26] EFFICIENT MONTE-CARLO METHODS FOR THE COMPUTER-SIMULATION OF BIOLOGICAL MOLECULES
    BOUZIDA, D
    KUMAR, S
    SWENDSEN, RH
    [J]. PHYSICAL REVIEW A, 1992, 45 (12): : 8894 - 8901
  • [27] The OpenGATE ecosystem for Monte Carlo simulation in medical physics
    Sarrut, David
    Arbor, Nicolas
    Baudier, Thomas
    Borys, Damian
    Etxebeste, Ane
    Fuchs, Hermann
    Gajewski, Jan
    Grevillot, Loiec
    Jan, Sebastien
    Kagadis, George C.
    Kang, Han Gyu
    Kirov, Assen
    Kochebina, Olga
    Krzemien, Wojciech
    Lomax, Antony
    Papadimitroulas, Panagiotis
    Pommranz, Christian
    Roncali, Emilie
    Rucinski, Antoni
    Winterhalter, Carla
    Maigne, Lydia
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (18):
  • [28] ON AUTOMATION OF MONTE CARLO SIMULATION IN HIGH ENERGY PHYSICS
    Kekelidze, D.
    Belov, S.
    Dudko, L.
    Sherstnev, A.
    [J]. DISTRIBUTED COMPUTING AND GRID-TECHNOLOGIES IN SCIENCE AND EDUCATION, 2010, : 133 - 136
  • [29] Artificial Intelligence for Monte Carlo Simulation in Medical Physics
    Sarrut, David
    Etxebeste, Ane
    Munoz, Enrique
    Krah, Nils
    Letang, Jean Michel
    [J]. FRONTIERS IN PHYSICS, 2021, 9
  • [30] COMPUTER-SIMULATION - A 3RD BRANCH OF PHYSICS - A CITATION CLASSIC COMMENTARY ON MONTE-CARLO METHODS IN STATISTICAL PHYSICS BY BINDER,K.
    BINDER, K
    [J]. CURRENT CONTENTS/PHYSICAL CHEMICAL & EARTH SCIENCES, 1989, (12): : 14 - 14