Pectins in Processed Fruit and Vegetables: Part II - Structure-Function Relationships

被引:309
|
作者
Sila, D. N.
Van Buggenhout, S.
Duvetter, T.
Fraeye, I.
De Roeck, A.
Van Loey, A.
Hendrickx, M. [1 ]
机构
[1] Katholieke Univ Leuven, Lab Food Technol, B-3001 Leuven, Belgium
关键词
PULSED ELECTRIC-FIELDS; HIGH-PRESSURE INACTIVATION; PURIFIED TOMATO POLYGALACTURONASE; HIGH HYDROSTATIC-PRESSURE; COMMERCIAL ENZYME PREPARATION; METHYL ESTERASE-ACTIVITY; ORANGE JUICE; THERMAL INACTIVATION; PARTIAL-PURIFICATION; HEAT-INACTIVATION;
D O I
10.1111/j.1541-4337.2009.00071.x
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Pectin represents a very heterogeneous biopolymer whose functionality remains largely puzzling. The link between the pectin fine structure and functional properties with relevance to plant growth and development, as well as food processing, is continually being explored. This review describes the current knowledge of pectin structure-function relationships. Key mechanisms dictating pectin structure-function relationships are discussed, including the polymer biosynthesis, cross-linking mechanisms, enzymatic and nonenzymatic conversion reactions, solubility properties, and more. Insight into the polymer structure-function relationships is highlighted by examining traditional and advanced methodologies used in pectin research. The role of pectin in modulating the quality characteristics of plant-based foods is underlined while pin-pointing some of the main challenges and perspectives. An integrated approach using the pectin structure-function relationship in the precision engineering of mechanical properties of tissue-based systems is proposed.
引用
收藏
页码:86 / 104
页数:19
相关论文
共 50 条
  • [41] Thermozymes: biotechnology and structure-function relationships
    Zeikus, JG
    Vieille, C
    Savchenko, A
    EXTREMOPHILES, 1998, 2 (03) : 179 - 183
  • [42] Structure-function relationships of calcium antagonists
    Rojstaczer, N
    Triggle, DJ
    BIOCHEMICAL PHARMACOLOGY, 1996, 51 (02) : 141 - 150
  • [43] Structure-function relationships in dystrophin and utrophin
    Winder, SJ
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1996, 24 (02) : 497 - 501
  • [44] Structure-function relationships in telomerase genes
    Sykorova, Eva
    Fajkus, Jiri
    BIOLOGY OF THE CELL, 2009, 101 (07) : 375 - 392
  • [45] Establishing structure-function relationships for eumelanin
    Nofsinger, JB
    Weinert, EE
    Simon, JD
    BIOPOLYMERS, 2002, 67 (4-5) : 302 - 305
  • [46] Structure-function relationships in the mineralocorticoid receptor
    Pippal, Jyotsna B.
    Fuller, Peter J.
    JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2008, 41 (5-6) : 405 - 413
  • [47] Structure-function relationships in protein homorepeats
    Elena-Real, Carlos A.
    Mier, Pablo
    Sibille, Nathalie
    Andrade-Navarro, Miguel A.
    Bernado, Pau
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 83
  • [48] Structure-Function Relationships in Spider Silk
    Pezolet, Michel
    Lefevre, Thierry
    Rousseau, Marie-Eve
    Boudreault, Simon
    Cloutier, Conrad
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 286 - +
  • [49] Structure-function relationships of pancreatic lipases
    Carriere, F
    Withers-Martinez, C
    van Tilbeurgh, H
    Roussel, A
    Cambillau, C
    Verger, R
    FETT-LIPID, 1998, 100 (4-5): : 96 - 102
  • [50] Analysing structure-function relationships with biosensors
    Van Regenmortel, MHV
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (5-6) : 794 - 800