A CFAR Algorithm for Layover and Shadow Detection in InSAR Images Based on Kernel Density Estimation

被引:1
|
作者
Qin, Xianxiang [1 ]
Zhou, Shilin [1 ]
Zou, Huanxin [1 ]
Ren, Yun [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
关键词
Interferometric synthetic aperture radar (InSAR); layover; shadow; constant false alarm rate (CFAR) detection; kernel density estimation;
D O I
10.1117/12.2030657
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a novel CFAR algorithm for detecting layover and shadow areas in Interferometric synthetic aperture radar (InSAR) images is proposed. Firstly, the probability density function (PDF) of the square root amplitude of InSAR image is estimated by the kernel density estimation. Then, a CFAR algorithm combining with the morphological method for detecting both layover and shadow is presented. Finally, the proposed algorithm is evaluated on a real InSAR image obtained by TerraSAR-X system. The experimental results have validated the effectiveness of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A new CFAR algorithm based on variable window for ship target detection in SAR images
    Shiyuan Chen
    Xiaojiang Li
    [J]. Signal, Image and Video Processing, 2019, 13 : 779 - 786
  • [32] A Relative Kernel-density Based Outlier Detection Algorithm
    Wahid, Abdul
    Rao, A. C. S.
    Deb, Koushik
    [J]. 2018 12TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT & APPLICATIONS (SKIMA), 2018, : 40 - +
  • [33] A Kernel Regression Approach to Cloud and Shadow Detection in Multitemporal Images
    Amoros-Lopez, J.
    Izquierdo-Verdiguier, E.
    Gomez-Chova, L.
    Munoz-Mari, J.
    Camps-Valls, G.
    [J]. MULTITEMP 2013: 7TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTI-TEMPORAL REMOTE SENSING IMAGES, 2013,
  • [34] A shadow detection algorithm for remote sensing images
    [J]. Jiang, J. (jjg3306@126.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [35] Novelty detection by multivariate kernel density estimation and growing neural gas algorithm
    Fink, Olga
    Zio, Enrico
    Weidmann, Ulrich
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 50-51 : 427 - 436
  • [36] MulticlusterKDE: a new algorithm for clustering based on multivariate kernel density estimation
    Scaldelai, D.
    Matioli, L. C.
    Santos, S. R.
    Kleina, M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (01) : 98 - 121
  • [37] Practical state estimation model and algorithm based on kernel density theory
    Lin, Jikeng
    Yang, Chunqi
    Liu, Yangsheng
    Luo, Shanshan
    Wang, Lingfeng
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [38] A small sample text classification algorithm based on kernel density estimation
    Yang, Liu
    Liguo, Han
    Xuesen, Cai
    [J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8 (06) : 235 - 244
  • [39] Density peaks clustering algorithm based on kernel density estimation and minimum spanning tree
    Fan T.
    Li X.
    Hou J.
    Liu B.
    Kang P.
    [J]. International Journal of Innovative Computing and Applications, 2022, 13 (5-6) : 336 - 350
  • [40] Layover and shadow regions detection based on superpixel segmentation and multi-information fusion
    Liu P.
    Li Z.
    Lou L.
    Yang W.
    Wang Z.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (12): : 2517 - 2530