Reference priors in multiparameter nonregular cases

被引:18
|
作者
Ghosal, S
机构
[1] Indian Statistical Institute,Division of Theoretical Statistics and Mathematics
关键词
asymptotic expansion; Bayes risk; discontinuous densities; Kullback-Leibler number; multidimensional parameter; posterior distribution; reference prior;
D O I
10.1007/BF02564432
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The reference prior in the sense of Bernardo is derived in some multiparameter nonregular cases. The family of densities we consider have discontinuities at some points which depend on one component of the parameter (say, theta) while, for fixed values of theta, the family is regular with respect to the other components (say, phi). We obtain the reference prior through an asymptotic expansion of Lindley's measure of information. The expansion is in itself of some importance. The results are illustrated using examples.
引用
收藏
页码:159 / 186
页数:28
相关论文
共 50 条
  • [31] CHARACTERIZATION OF PRIORS UNDER WHICH BAYESIAN AND FREQUENTIST BARTLETT CORRECTIONS ARE EQUIVALENT IN THE MULTIPARAMETER CASE
    GHOSH, JK
    MUKERJEE, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 38 (02) : 385 - 393
  • [32] Parametrizations and reference priors for multinomial decomposable graphical models
    Consonni, Guido
    Massam, Helene
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) : 380 - 396
  • [33] Reference priors for constrained rate models of count data
    Sonksen, Michael
    Peruggia, Mario
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (11) : 3023 - 3036
  • [35] Multi-Reference Shape Priors for Active Contours
    Alban Foulonneau
    Pierre Charbonnier
    Fabrice Heitz
    International Journal of Computer Vision, 2009, 81
  • [36] On Divergence Measures Leading to Jeffreys and Other Reference Priors
    Liu, Ruitao
    Chakrabarti, Arijit
    Samanta, Tapas
    Ghosh, Jayanta. K.
    Ghosh, Malay
    BAYESIAN ANALYSIS, 2014, 9 (02): : 331 - 369
  • [37] A note on the confidence properties of reference priors for the calibration model
    Philippe, A
    Robert, CP
    TEST, 1998, 7 (01) : 147 - 160
  • [38] Multi-Reference Shape Priors for Active Contours
    Foulonneau, Alban
    Charbonnier, Pierre
    Heitz, Fabrice
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (01) : 68 - 81
  • [39] Reference priors for the general location-scale model
    Fernández, C
    Steel, MFJ
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (04) : 377 - 384
  • [40] Reply to "Comment on 'Reference priors for high energy physics' "
    Demortier, Luc
    Jain, Supriya
    Prosper, Harrison B.
    PHYSICAL REVIEW D, 2011, 84 (11):