StepGame: A New Benchmark for Robust Multi-Hop Spatial Reasoning in Texts

被引:0
|
作者
Shi, Zhengxiang [1 ]
Zhang, Qiang [2 ]
Lipani, Aldo [1 ]
机构
[1] UCL, London, England
[2] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inferring spatial relations in natural language is a crucial ability an intelligent system should possess. The bAbI dataset tries to capture tasks relevant to this domain (task 17 and 19). However, these tasks have several limitations. Most importantly, they are limited to fixed expressions, they are limited in the number of reasoning steps required to solve them, and they fail to test the robustness of models to input that contains irrelevant or redundant information. In this paper, we present a new Question-Answering dataset called StepGame for robust multi-hop spatial reasoning in texts. Our experiments demonstrate that state-of-the-art models on the bAbI dataset struggle on the StepGame dataset. Moreover, we propose a Tensor-Product based Memory-Augmented Neural Network (TP-MANN) specialized for spatial reasoning tasks. Experimental results on both datasets show that our model outperforms all the baselines with superior generalization and robustness performance.
引用
收藏
页码:11321 / 11329
页数:9
相关论文
共 50 条
  • [41] Hyperbolic Directed Hypergraph-Based Reasoning for Multi-Hop KBQA
    Xiao, Guanchen
    Liao, Jinzhi
    Tan, Zhen
    Yu, Yiqi
    Ge, Bin
    MATHEMATICS, 2022, 10 (20)
  • [42] SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning
    Atzeni, Mattia
    Bogojeska, Jasmina
    Loukas, Andreas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [43] HSMH: A Hierarchical Sequence Multi-Hop Reasoning Model With Reinforcement Learning
    Wang, Dan
    Li, Bo
    Song, Bin
    Chen, Chen
    Yu, F. Richard
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1638 - 1649
  • [44] Multi-Hop Knowledge Graph Reasoning in Few-Shot Scenarios
    Zheng, Shangfei
    Chen, Wei
    Wang, Weiqing
    Zhao, Pengpeng
    Yin, Hongzhi
    Zhao, Lei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1713 - 1727
  • [45] Single Sequence Prediction over Reasoning Graphs for Multi-hop QA
    Ramesh, Gowtham
    Sreedhar, Makesh
    Hu, Junjie
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11466 - 11481
  • [46] Self-Assembling Modular Networks for Interpretable Multi-Hop Reasoning
    Jiang, Yichen
    Bansal, Mohit
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 4474 - 4484
  • [47] Neural Multi-hop Reasoning with Logical Rules on Biomedical Knowledge Graphs
    Liu, Yushan
    Hildebrandt, Marcel
    Joblin, Mitchell
    Ringsquandl, Martin
    Raissouni, Rime
    Tresp, Volker
    SEMANTIC WEB, ESWC 2021, 2021, 12731 : 375 - 391
  • [48] ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs
    Zhang, Zhanqiu
    Wang, Jie
    Chen, Jiajun
    Ji, Shuiwang
    Wu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [49] Generating Multi-hop Reasoning Questions to Improve Machine Reading Comprehension
    Yu, Jianxing
    Quan, Xiaojun
    Su, Qinliang
    Yin, Jian
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 281 - 291
  • [50] Analyzing the Effectiveness of the Underlying Reasoning Tasks in Multi-hop Question Answering
    Ho, Xanh
    Nguyen, Anh-Khoa Duong
    Sugawara, Saku
    Aizawa, Akiko
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1163 - 1180