Minimax M-estimation under Adversarial Corruption

被引:0
|
作者
Bhatt, Sujay [1 ]
Fang, Guanhua [1 ]
Li, Ping [1 ]
Samorodnitsky, Gennady [2 ,3 ]
机构
[1] Baidu Res, Cognit Comp Lab, 10900 NE 8th St, Bellevue, WA 98004 USA
[2] Cornell Univ, Sch ORIE, 220 Frank T Rhodes Hall, Ithaca, NY 14853 USA
[3] Baidu Res, Bellevue, WA 98004 USA
关键词
SUB-GAUSSIAN ESTIMATORS; MULTIARMED BANDIT; ROBUST; MATRIX; REGRET; BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
(1)We present a new finite-sample analysis of Catoni's M-estimator under adversarial contamination, where an adversary is allowed to corrupt a fraction of the samples arbitrarily. We make minimal assumptions on the distribution of the uncorrupted random variables, namely, we only assume the existence of a known upper bound on the (1+ epsilon)th central moment. We provide a lower bound on the minimax error rate for the mean estimation problem under adversarial corruption under this weak assumption, and establish that the proposed M-estimator achieves this lower bound (up to multiplicative constants). When variance is infinite, the tolerance to contamination of any estimator reduces as e. 0. We establish a tight upper bound that characterizes this bargain. To illustrate the usefulness of the derived robust M-estimator in an online setting, we present a bandit algorithm for the partially identifiable best arm identification problem that improves upon the sample complexity of the state of the art algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] M-estimation in Multistage Sampling Procedures
    Atul Mallik
    Moulinath Banerjee
    George Michailidis
    [J]. Sankhya A, 2020, 82 : 261 - 309
  • [32] M-estimation in Multistage Sampling Procedures
    Mallik, Atul
    Banerjee, Moulinath
    Michailidis, George
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2020, 82 (02): : 261 - 309
  • [33] ROBUST MODEL SELECTION AND M-ESTIMATION
    MACHADO, JAF
    [J]. ECONOMETRIC THEORY, 1993, 9 (03) : 478 - 493
  • [34] M-estimation using penalties or sieves
    van de Geer, S
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 55 - 69
  • [35] General matching quantiles M-estimation
    Qin, Shanshan
    Wu, Yuehua
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 147 (147)
  • [36] General M-estimation and its bootstrap
    Stephen M. S. Lee
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 471 - 490
  • [37] General M-estimation and its bootstrap
    Lee, Stephen M. S.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (04) : 471 - 490
  • [38] Linear M-estimation with bounded variables
    Edlund, O
    [J]. BIT, 1997, 37 (01): : 13 - 23
  • [39] Robust and sparse M-estimation of DOA
    Mecklenbraeuker, Christoph F.
    Gerstoft, Peter
    Ollila, Esa
    Park, Yongsung
    [J]. SIGNAL PROCESSING, 2024, 220
  • [40] Application of equiredundancy design to M-estimation
    Hekimoglu, S
    [J]. JOURNAL OF SURVEYING ENGINEERING-ASCE, 1998, 124 (03): : 103 - 124