Minimax M-estimation under Adversarial Corruption

被引:0
|
作者
Bhatt, Sujay [1 ]
Fang, Guanhua [1 ]
Li, Ping [1 ]
Samorodnitsky, Gennady [2 ,3 ]
机构
[1] Baidu Res, Cognit Comp Lab, 10900 NE 8th St, Bellevue, WA 98004 USA
[2] Cornell Univ, Sch ORIE, 220 Frank T Rhodes Hall, Ithaca, NY 14853 USA
[3] Baidu Res, Bellevue, WA 98004 USA
关键词
SUB-GAUSSIAN ESTIMATORS; MULTIARMED BANDIT; ROBUST; MATRIX; REGRET; BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
(1)We present a new finite-sample analysis of Catoni's M-estimator under adversarial contamination, where an adversary is allowed to corrupt a fraction of the samples arbitrarily. We make minimal assumptions on the distribution of the uncorrupted random variables, namely, we only assume the existence of a known upper bound on the (1+ epsilon)th central moment. We provide a lower bound on the minimax error rate for the mean estimation problem under adversarial corruption under this weak assumption, and establish that the proposed M-estimator achieves this lower bound (up to multiplicative constants). When variance is infinite, the tolerance to contamination of any estimator reduces as e. 0. We establish a tight upper bound that characterizes this bargain. To illustrate the usefulness of the derived robust M-estimator in an online setting, we present a bandit algorithm for the partially identifiable best arm identification problem that improves upon the sample complexity of the state of the art algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Minimax weights for generalised M-estimation in biased regression models
    Sinha, S
    Wiens, DP
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (03): : 401 - 414
  • [2] Spatial local M-estimation under association
    Chen Jia
    Zhang Lixin
    Li Degui
    [J]. Metrika, 2008, 67 : 11 - 29
  • [3] Spatial local M-estimation under association
    Jia, Chen
    Lixin, Zhang
    Degui, Li
    [J]. METRIKA, 2008, 67 (01) : 11 - 29
  • [4] M-estimation in linear models under nonstandard conditions
    El Bantli, F
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 121 (02) : 231 - 248
  • [5] RESTRICTED M-ESTIMATION
    NYQUIST, H
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (04) : 499 - 507
  • [6] Sequential M-estimation
    Pham, DS
    Leung, YH
    Zoubir, A
    Brcic, R
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 697 - 700
  • [7] General M-estimation
    Bai, ZD
    Wu, Y
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 63 (01) : 119 - 135
  • [8] The calculus of M-estimation
    Stefanski, LA
    Boos, DD
    [J]. AMERICAN STATISTICIAN, 2002, 56 (01): : 29 - 38
  • [9] MINIMAX RATE OF DISTRIBUTION ESTIMATION ON UNKNOWN SUBMANIFOLDS UNDER ADVERSARIAL LOSSES
    Tang, Rong
    Yang, Yun
    [J]. ANNALS OF STATISTICS, 2023, 51 (03): : 1282 - 1308
  • [10] ON M-estimation under long-range dependence in volatility
    Beran, Jan
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (01) : 138 - 153