Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion

被引:106
|
作者
Horsley, S. A. R. [1 ]
Wu, Jin-Hui [2 ]
Artoni, M. [3 ,4 ,5 ,6 ]
La Rocca, G. C. [7 ,8 ]
机构
[1] Univ Exeter, Dept Phys & Astron, Electromagnet & Acoust Mat Grp, Exeter EX4 4QL, Devon, England
[2] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
[3] European Lab Nonlinear Spect, I-50019 Florence, Italy
[4] Ist Nazl Ottica, I-50019 Florence, Italy
[5] Univ Brescia, Dept Engn & Informat Technol, I-25133 Brescia, Italy
[6] Univ Brescia, CNR IDASC, I-25133 Brescia, Italy
[7] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[8] CNISM, I-56126 Pisa, Italy
基金
英国工程与自然科学研究理事会; 欧盟第七框架计划;
关键词
WAVE-PACKETS; DIODE; LATTICES; TRANSMISSION;
D O I
10.1103/PhysRevLett.110.223602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reciprocity is fundamental to light transport and is a concept that holds also in rather complex systems. Yet, reciprocity can be switched off even in linear, isotropic, and passive media by setting the material structure into motion. In highly dispersive multilayers this leads to a fairly large forward-backward asymmetry in the pulse transmission. Moreover, in multilevel systems, this transport phenomenon can be all-optically enhanced. For atomic multilayer structures made of three-level cold Rb-87 atoms, for instance, forward-backward transmission contrast around 95% can be obtained already at atomic speeds in the meter per second range. The scheme we illustrate may open up avenues for optical isolation that were not previously accessible.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Optical Design of X-Ray Resonant Cavity Based on Crystal Bragg Mirrors
    Zhang Zhiyuan
    Wu Chen
    Huang Nanshun
    Song Li
    Zhang Zengyan
    Dong Xiaohao
    Deng Haixiao
    Wang Jie
    [J]. ACTA OPTICA SINICA, 2022, 42 (11)
  • [42] Vapor-Sensitive Bragg Mirrors and Optical Isotherms from Mesoporous Nanoparticle Suspensions
    Kobler, Johannes
    Lotsch, Bettina V.
    Ozin, Geoffrey A.
    Bein, Thomas
    [J]. ACS NANO, 2009, 3 (07) : 1669 - 1676
  • [43] Optical properties of mirrors for focusing of non-normal incidence atom beams
    Wilson, RJ
    Holst, B
    Allison, W
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (07): : 2960 - 2967
  • [44] Nanoscale optical nonreciprocity with nonlinear metasurfaces
    Tripathi, Aditya
    Ugwu, Chibuzor Fabian
    Asadchy, Viktar S.
    Faniayeu, Ihar
    Kravchenko, Ivan
    Fan, Shanhui
    Kivshar, Yuri
    Valentine, Jason
    Kruk, Sergey S.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [45] STABILIZATION OF CHARACTERISTICS OF DISTRIBUTED BRAGG MIRRORS
    SPIKHALSKII, AA
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1987, 57 (08): : 1665 - 1668
  • [46] Designing of Raman lasers with Bragg mirrors
    Mossakowska-Wyszynska, Agnieszka
    Tyszka-Zawadzka, Anna
    Mroczynski, Robert
    Beck, Romuald B.
    Szczepanski, Pawel
    [J]. ELECTRON TECHNOLOGY CONFERENCE 2013, 2013, 8902
  • [47] Motion of a two-level atom in an optical cavity
    Doherty, AC
    Parkins, AS
    Tan, SM
    Walls, DF
    [J]. PHYSICAL REVIEW A, 1997, 56 (01): : 833 - 844
  • [48] COLD LIGHT MIRRORS
    KIENEL, G
    DACHSELT, WD
    [J]. INDUSTRIAL RESEARCH & DEVELOPMENT, 1980, 22 (01): : 135 - &
  • [49] Quantum Squeezing Induced Optical Nonreciprocity
    Tang, Lei
    Tang, Jiangshan
    Chen, Mingyuan
    Nori, Franco
    Xiao, Min
    Xia, Keyu
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (08)
  • [50] Optical Nonreciprocity in Asymmetric Optomechanical Couplers
    Wang, Zheqi
    Shi, Lei
    Liu, Yi
    Xu, Xinbiao
    Zhang, Xinliang
    [J]. SCIENTIFIC REPORTS, 2015, 5