Generalised Kummer construction and the cohomology rings of G2-manifolds

被引:2
|
作者
Taimanov, I. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk Natl Res State Univ, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
cohomology ring; intersection ring; manifolds with G(2)-holonomy; COMPACT; 8-MANIFOLDS;
D O I
10.1070/SM8999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Intersection theory is used to calculate the cohomology rings of G(2)-manifolds arising from the generalised Kummer construction. For one example, generators of the rational cohomology ring are found and their multiplication table is described.
引用
收藏
页码:1803 / 1811
页数:9
相关论文
共 50 条
  • [21] G2-instantons on generalised Kummer constructions
    Walpuski, Thomas
    GEOMETRY & TOPOLOGY, 2013, 17 (04) : 2345 - 2388
  • [22] Spinorial description of SU(3)- and G2-manifolds
    Agricola, Ilka
    Chiossi, Simon G.
    Friedrich, Thomas
    Hoell, Jos
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 535 - 555
  • [23] U(1)-Gauge Theories on G2-Manifolds
    Hu, Zhi
    Zong, Runhong
    ANNALES HENRI POINCARE, 2024, 25 (05): : 2453 - 2487
  • [24] Manifolds with parallel differential forms and Kahler identities for G2-manifolds
    Verbitsky, Misha
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) : 1001 - 1016
  • [25] EXISTENCE OF COMPATIBLE CONTACT STRUCTURES ON G2-MANIFOLDS
    Arikan, M. Firat
    Cho, Hyunjoo
    Salur, Sema
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (02) : 321 - 333
  • [26] Compact weak G2-manifolds with conical singularities
    Bilal, A
    Metzger, S
    NUCLEAR PHYSICS B, 2003, 663 (1-2) : 343 - 364
  • [27] Monopoles on the Bryant-Salamon G2-manifolds
    Oliveira, Goncalo
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 86 : 599 - 632
  • [28] Anomalies in M-theory on singular G2-manifolds
    Bilal, A
    Metzger, S
    NUCLEAR PHYSICS B, 2003, 672 (1-2) : 239 - 263
  • [29] Extra-twisted connected sum G2-manifolds
    Nordstrom, Johannes
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 64 (01)
  • [30] Generalised G2–Manifolds
    Frederik Witt
    Communications in Mathematical Physics, 2006, 265 : 275 - 303