Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy

被引:0
|
作者
Lahanas, M [1 ]
Milickovic, N
Baltas, D
Zamboglou, N
机构
[1] Klinikum Offenbach, Strahlenklin, Dept Med Phys & Engn, D-63069 Offenbach, Germany
[2] Natl Tech Univ Athens, Inst Commun & Comp Syst, Athens 15773, Greece
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in form of an aggregate function which combines individual objectives into a single utility value. As a result, the optimization problem becomes single objective, prior to optimization. Up to 300 parameters must be optimized satisfying objectives which are often competing. We use multiobjective dose optimization methods where the objectives are expressed in terms of quantities derived from dose-volume histograms or in terms of statistical parameters of dose distributions from a small number of sampling points. For the last approach we compare the optimization results of evolutionary multiobjective algorithms with deterministic optimization methods. The deterministic algorithms are very efficient and produce the best results. The performance of the multiobjective evolutionary algorithms is improved if a small part of the population is initialized by deterministic algorithms.
引用
收藏
页码:574 / 587
页数:14
相关论文
共 50 条
  • [32] Evolutionary algorithms for multiobjective and multimodal optimization of diagnostic schemes
    de Toro, F
    Ros, E
    Mota, S
    Ortega, J
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (02) : 178 - 189
  • [33] A Portfolio Optimization Approach to Selection in Multiobjective Evolutionary Algorithms
    Yevseyeva, Iryna
    Guerreiro, Andreia P.
    Emmerich, Michael T. M.
    Fonseca, Carlos M.
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 672 - 681
  • [34] Intelligent Algorithms for solving multiobjective optimization problems
    Yi Hong-Xia
    Xiao Liu
    Liu Pu-Kun
    [J]. 2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 13101 - 13105
  • [35] Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part II: Application example
    Fonseca, CM
    Fleming, PJ
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1998, 28 (01): : 38 - 47
  • [36] An Evolutionary Multitasking Optimization Framework for Constrained Multiobjective Optimization Problems
    Qiao, Kangjia
    Yu, Kunjie
    Qu, Boyang
    Liang, Jing
    Song, Hui
    Yue, Caitong
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 263 - 277
  • [37] Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy
    Lahanas, M
    Baltas, D
    Giannouli, S
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (05): : 599 - 617
  • [38] Evolutionary Algorithms and Matroid Optimization Problems
    Reichel, Joachim
    Skutella, Martin
    [J]. ALGORITHMICA, 2010, 57 (01) : 187 - 206
  • [39] Evolutionary Algorithms and Matroid Optimization Problems
    Reichel, Joachim
    Skutella, Martin
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 947 - 954
  • [40] Evolutionary Algorithms and Matroid Optimization Problems
    Joachim Reichel
    Martin Skutella
    [J]. Algorithmica, 2010, 57 : 187 - 206