A comment on "Relaxed conditions for radial-basis function networks to be universal approximators"

被引:10
|
作者
Wu, Wei [1 ]
Nan, Dong [2 ]
Long, Jin-ling [1 ]
Ma, Yu-mei [3 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
[3] Dalian Nationalities Univ, Dept Comp, Dalian, Peoples R China
关键词
The first author was partly supported by the National Natural Science Foundation of China (10471017);
D O I
10.1016/j.neunet.2008.09.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3
引用
收藏
页码:1464 / 1465
页数:2
相关论文
共 50 条
  • [21] Universal Approximation Using Radial-Basis-Function Networks
    Park, J.
    Sandberg, I. W.
    [J]. NEURAL COMPUTATION, 1991, 3 (02) : 246 - 257
  • [22] Nonlinear Modeling of GaN Doherty Power Amplifiers Using Radial-Basis Function Neural Networks
    Tong, Fu
    Liu, Haiwen
    Li, Xiaohua
    Li, Wenming
    Zhang, Qijun
    [J]. APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2535 - +
  • [23] Research on Suspension System based on Radial-Basis Function Algorithm
    Tang, Chuan Yin
    Zhao, Guangyao
    Zhang, Yinmin
    Ma, Yan
    [J]. INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 739 - +
  • [24] Computing and Analyzing the Sensitivity of Radial-Basis Function Neural Network
    Li, Jie
    Li, Jun
    Liu, Ying
    [J]. MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 1957 - 1961
  • [25] A reservoir radial-basis function neural network in prediction tasks
    Tyshchenko O.K.
    [J]. Automatic Control and Computer Sciences, 2016, 50 (2) : 65 - 71
  • [26] Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks
    Isaksson, M
    Wisell, D
    Rönnow, D
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (11) : 3422 - 3428
  • [27] Sensitivity of radial-basis networks to single-example decision classes
    Imam, IF
    [J]. ICEEC'04: 2004 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING, PROCEEDINGS, 2004, : 333 - 336
  • [28] Neural networks with a continuous squashing function in the output are universal approximators
    Castro, JL
    Mantes, CJ
    Benítez, JM
    [J]. NEURAL NETWORKS, 2000, 13 (06) : 561 - 563
  • [29] Hardware implementation of radial-basis neural networks with Gaussian activation functions on FPGA
    Shymkovych, Volodymyr
    Telenyk, Sergii
    Kravets, Petro
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (15): : 9467 - 9479
  • [30] Radial-basis function network for the approximation of FBG sensor spectra with distorted peaks
    Paterno, A. S.
    Silva, J. C. C.
    Milczewski, M. S.
    Arruda, L. V. R.
    Kalinowski, H. J.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (05) : 1039 - 1045