Parameter estimation of nonlinear mixed-effects models using first-order conditional linearization and the EM algorithm

被引:2
|
作者
Fu, Liyong [1 ]
Lei, Yuancai [1 ]
Sharma, Ram P. [2 ]
Tang, Shouzheng [1 ]
机构
[1] Chinese Acad Forestry, Res Inst Forest Resource Informat Tech, Beijing, Peoples R China
[2] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, As, Norway
关键词
Cunninghamia lanceolata; expectation-maximization algorithm; first-order conditional expansion; Lindstrom and Bates algorithm; nonlinear mixed-effects models; orange tree data; simulated data; MAXIMUM-LIKELIHOOD-ESTIMATION; LONGITUDINAL DATA; APPROXIMATION; CONVERGENCE;
D O I
10.1080/02664763.2012.740621
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonlinear mixed-effects (NLME) models are flexible enough to handle repeated-measures data from various disciplines. In this article, we propose both maximum-likelihood and restricted maximum-likelihood estimations of NLME models using first-order conditional expansion (FOCE) and the expectationmaximization (EM) algorithm. The FOCE-EM algorithm implemented in the ForStat procedure SNLME is compared with the Lindstrom and Bates (LB) algorithm implemented in both the SAS macro NLINMIX and the S-Plus/R function nlme in terms of computational efficiency and statistical properties. Two realworld data sets an orange tree data set and a Chinese fir (Cunninghamia lanceolata) data set, and a simulated data set were used for evaluation. FOCE-EM converged for all mixed models derived from the base model in the two realworld cases, while LB did not, especially for the models in which random effects are simultaneously considered in several parameters to account for between-subject variation. However, both algorithms had identical estimated parameters and fit statistics for the converged models. We therefore recommend using FOCE-EM in NLME models, particularly when convergence is a concern in model selection.
引用
收藏
页码:252 / 265
页数:14
相关论文
共 50 条